Suppr超能文献

广义线性混合模型的R2D2先验。

The R2D2 prior for generalized linear mixed models.

作者信息

Yanchenko Eric, Bondell Howard D, Reich Brian J

机构信息

Akita International University.

University of Melbourne.

出版信息

Am Stat. 2025;79(1):40-49. doi: 10.1080/00031305.2024.2352010. Epub 2024 May 24.

Abstract

In Bayesian analysis, the selection of a prior distribution is typically done by considering each parameter in the model. While this can be convenient, in many scenarios it may be desirable to place a prior on a summary measure of the model instead. In this work, we propose a prior on the model fit, as measured by a Bayesian coefficient of determination ( ), which then induces a prior on the individual parameters. We achieve this by placing a beta prior on and then deriving the induced prior on the global variance parameter for generalized linear mixed models. We derive closed-form expressions in many scenarios and present several approximation strategies when an analytic form is not possible and/or to allow for easier computation. In these situations, we suggest approximating the prior by using a generalized beta prime distribution and provide a simple default prior construction scheme. This approach is quite flexible and can be easily implemented in standard Bayesian software. Lastly, we demonstrate the performance of the method on simulated and real-world data, where the method particularly shines in high-dimensional settings, as well as modeling random effects.

摘要

在贝叶斯分析中,先验分布的选择通常是通过考虑模型中的每个参数来完成的。虽然这可能很方便,但在许多情况下,可能希望对模型的一个汇总度量设置先验。在这项工作中,我们提出了一种基于模型拟合的先验,用贝叶斯决定系数( )来衡量,然后由此诱导出各个参数的先验。我们通过对 设置一个贝塔先验,然后推导出广义线性混合模型全局方差参数的诱导先验来实现这一点。我们在许多情况下推导了封闭形式的表达式,并在无法得到解析形式和/或为便于计算时提出了几种近似策略。在这些情况下,我们建议使用广义贝塔素数分布来近似先验,并提供一个简单的默认先验构造方案。这种方法非常灵活,可以很容易地在标准贝叶斯软件中实现。最后,我们在模拟数据和真实数据上展示了该方法的性能,该方法在高维设置以及对随机效应建模方面表现尤为出色。

相似文献

1
The R2D2 prior for generalized linear mixed models.
Am Stat. 2025;79(1):40-49. doi: 10.1080/00031305.2024.2352010. Epub 2024 May 24.
4
Mitigating Bias in Generalized Linear Mixed Models: The Case for Bayesian Nonparametrics.
Stat Sci. 2016 Feb;31(1):80-95. doi: 10.1214/15-STS533. Epub 2016 Feb 10.
5
Lognormal and Gamma Mixed Negative Binomial Regression.
Proc Int Conf Mach Learn. 2012;2012:1343-1350.
6
An adjusted coefficient of determination (R ) for generalized linear mixed models in one go.
Biom J. 2023 Oct;65(7):e2200290. doi: 10.1002/bimj.202200290. Epub 2023 May 1.
7
Bayesian hierarchical models and prior elicitation for fitting psychometric functions.
Front Comput Neurosci. 2023 Mar 2;17:1108311. doi: 10.3389/fncom.2023.1108311. eCollection 2023.
8
Default Prior Distributions and Efficient Posterior Computation in Bayesian Factor Analysis.
J Comput Graph Stat. 2009 Jun 1;18(2):306-320. doi: 10.1198/jcgs.2009.07145.
9
A semi-parametric Bayesian approach to generalized linear mixed models.
Stat Med. 1998 Nov 30;17(22):2579-96. doi: 10.1002/(sici)1097-0258(19981130)17:22<2579::aid-sim948>3.0.co;2-p.

本文引用的文献

1
Stan: A Probabilistic Programming Language.
J Stat Softw. 2017;76. doi: 10.18637/jss.v076.i01. Epub 2017 Jan 11.
2
mixOmics: An R package for 'omics feature selection and multiple data integration.
PLoS Comput Biol. 2017 Nov 3;13(11):e1005752. doi: 10.1371/journal.pcbi.1005752. eCollection 2017 Nov.
3
Dirichlet-Laplace priors for optimal shrinkage.
J Am Stat Assoc. 2015 Dec 1;110(512):1479-1490. doi: 10.1080/01621459.2014.960967. Epub 2014 Sep 25.
4
Introduction to genetic association studies.
Cold Spring Harb Protoc. 2012 Mar 1;2012(3):297-306. doi: 10.1101/pdb.top068163.
5
Prediction of clinical outcome with microarray data: a partial least squares discriminant analysis (PLS-DA) approach.
Hum Genet. 2003 May;112(5-6):581-92. doi: 10.1007/s00439-003-0921-9. Epub 2003 Feb 27.
6
Molecular portraits of human breast tumours.
Nature. 2000 Aug 17;406(6797):747-52. doi: 10.1038/35021093.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验