Yanchenko Eric, Bondell Howard D, Reich Brian J
Akita International University.
University of Melbourne.
Am Stat. 2025;79(1):40-49. doi: 10.1080/00031305.2024.2352010. Epub 2024 May 24.
In Bayesian analysis, the selection of a prior distribution is typically done by considering each parameter in the model. While this can be convenient, in many scenarios it may be desirable to place a prior on a summary measure of the model instead. In this work, we propose a prior on the model fit, as measured by a Bayesian coefficient of determination ( ), which then induces a prior on the individual parameters. We achieve this by placing a beta prior on and then deriving the induced prior on the global variance parameter for generalized linear mixed models. We derive closed-form expressions in many scenarios and present several approximation strategies when an analytic form is not possible and/or to allow for easier computation. In these situations, we suggest approximating the prior by using a generalized beta prime distribution and provide a simple default prior construction scheme. This approach is quite flexible and can be easily implemented in standard Bayesian software. Lastly, we demonstrate the performance of the method on simulated and real-world data, where the method particularly shines in high-dimensional settings, as well as modeling random effects.
在贝叶斯分析中,先验分布的选择通常是通过考虑模型中的每个参数来完成的。虽然这可能很方便,但在许多情况下,可能希望对模型的一个汇总度量设置先验。在这项工作中,我们提出了一种基于模型拟合的先验,用贝叶斯决定系数( )来衡量,然后由此诱导出各个参数的先验。我们通过对 设置一个贝塔先验,然后推导出广义线性混合模型全局方差参数的诱导先验来实现这一点。我们在许多情况下推导了封闭形式的表达式,并在无法得到解析形式和/或为便于计算时提出了几种近似策略。在这些情况下,我们建议使用广义贝塔素数分布来近似先验,并提供一个简单的默认先验构造方案。这种方法非常灵活,可以很容易地在标准贝叶斯软件中实现。最后,我们在模拟数据和真实数据上展示了该方法的性能,该方法在高维设置以及对随机效应建模方面表现尤为出色。