Suppr超能文献

基于转录组测序的肾透明细胞癌中与细胞内细胞结构相关的生物标志物

Biomarkers associated with cell-in-cell structure in kidney renal clear cell carcinoma based on transcriptome sequencing.

作者信息

Wang Zehua, Zhang Zhongxiao

机构信息

Department of Urology, Qilu Hospital, Shandong University, Jinan, China.

Department of Urology, Qilu Hospital (Qingdao), Shandong University, Qingdao, China.

出版信息

PeerJ. 2025 Apr 16;13:e19246. doi: 10.7717/peerj.19246. eCollection 2025.

Abstract

BACKGROUND

Kidney renal clear cell carcinoma (KIRC), the main histological subtype of renal cell carcinoma, has a high incidence globally. Cell-in-cell structures (CICs), as a cellular biological phenomenon, play pivotal roles in cell competition, immune evasion and tumor progression in the context of KIRC.

METHODS

Data for this study were sourced from The Cancer Genome Atlas (TCGA), International Cancer Genome Consortium (ICGC), and Gene Expression Omnibus (GEO) databases. Differentially expressed genes (DEGs) were identified using the limma package. Enrichment analyses were performed using the clusterProfiler package. Support vector machine-recursive feature elimination (SVM-RFE) and Least Absolute Shrinkage and Selection Operator (LASSO) regression, implemented the caret and glmnet packages in R, were used to select biomarkers. The accuracy of these biomarkers was verified by using the receiver operating characteristic (ROC) curve as well as experiments (CCK-8 assay, wound healing assay, Transwell assay, and quantitative real-time PCR). The CIBERSORT algorithm was applied to explore the association between immune infiltration and the biomarkers. Further analysis explored the association between these biomarkers and clinicopathological characteristics of KIRC. For single-cell data, the Seurat package is used to read the sample data, and the SCTransform function is employed for normalization.

RESULTS

This study identified 1,256 DEGs which enriched in T-cell immune system regulation processes. Five hub genes (, , , , and ) were biomarkers with area under the curve (AUC) values > 0.8, indicating high predictive performance. validation experiments demonstrated that the expressions of all five biomarkers in KIRC cells were elevated, and the knockdown of could inhibit the migration and invasion of KIRC cells. Immune infiltration analysis showed higher proportions of T-cells and macrophages in tumor tissues. and expressions correlated significantly with stage and grade, while , , and were highly expressed in proliferative tumor cells.

CONCLUSION

This study provides new biomarkers for KIRC, offering valuable insights into its developmental mechanisms for the research of CIC in this disease.

摘要

背景

肾透明细胞癌(KIRC)是肾细胞癌的主要组织学亚型,在全球发病率较高。细胞内细胞结构(CICs)作为一种细胞生物学现象,在KIRC的细胞竞争、免疫逃逸和肿瘤进展中起关键作用。

方法

本研究数据来源于癌症基因组图谱(TCGA)、国际癌症基因组联盟(ICGC)和基因表达综合数据库(GEO)。使用limma软件包鉴定差异表达基因(DEGs)。使用clusterProfiler软件包进行富集分析。采用支持向量机递归特征消除(SVM-RFE)和最小绝对收缩和选择算子(LASSO)回归(在R语言中通过caret和glmnet软件包实现)来选择生物标志物。通过受试者工作特征(ROC)曲线以及实验(CCK-8检测、伤口愈合检测、Transwell检测和定量实时PCR)验证这些生物标志物的准确性。应用CIBERSORT算法探索免疫浸润与生物标志物之间的关联。进一步分析探讨这些生物标志物与KIRC临床病理特征之间的关联。对于单细胞数据,使用Seurat软件包读取样本数据,并采用SCTransform函数进行标准化。

结果

本研究鉴定出1256个DEGs,这些基因富集于T细胞免疫系统调节过程。五个核心基因(,,,和)是曲线下面积(AUC)值>0.8的生物标志物,表明具有较高的预测性能。验证实验表明,所有五个生物标志物在KIRC细胞中的表达均升高,敲低可抑制KIRC细胞的迁移和侵袭。免疫浸润分析显示肿瘤组织中T细胞和巨噬细胞比例较高。和的表达与分期和分级显著相关,而、和在增殖性肿瘤细胞中高表达。

结论

本研究为KIRC提供了新的生物标志物,为研究该疾病中CIC的发育机制提供了有价值的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fc1d/12009028/dad6a1e1ae1f/peerj-13-19246-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验