Cedrún-Morales Manuela, Migliavacca Martina, Ceballos Manuel, Perez-Maseda Marta, Zampini Giulia, Alameda Felgueiras María Teresa, Ostolaza-Paraiso Jon, Juanes Marisa, Rincón Irene, Fairen-Jimenez David, Montenegro Javier, Horcajada Patricia, Polo Ester, Pelaz Beatriz, Del Pino Pablo
Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Física de Partículas, Universidade de Santiago de Compostela, 15705 Santiago de Compostela, Spain.
Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Inorgánica, Universidade de Santiago de Compostela, 15705 Santiago de Compostela, Spain.
ACS Appl Mater Interfaces. 2025 Apr 30;17(17):24994-25010. doi: 10.1021/acsami.5c01695. Epub 2025 Apr 21.
Nanosized microporous metal-organic-frameworks (NMOFs) serve as versatile drug delivery systems capable of navigating complex microenvironments and interacting with cells in specific tissues. The physicochemical properties of NMOFs, such as size, composition, porosity, colloidal stability, and external surface functionalization are essential for their success as efficient carriers. This study introduces a flexible, clickable coating using an amphiphilic polymer derivatized with dibenzo cyclooctyne groups as a universal, postsynthetic functionalization tool. To prove its universality, nanosized MOFs with different structure and composition (UiO-67, NU-1000, PCN-222, and ZIF-8) were produced with high monodispersity and were coated with a clickable, amphiphilic polymer. The resulting polymer-coated NMOFs display exceptional colloidal and structural stability in different biologically relevant media. For comparative purposes, we selected two size-equivalent NMOFs, ZIF-8 and UiO-67, which were functionalized with a library of biologically relevant azide-derivatized (macro)molecules, including poly(ethylene glycol), mannose, and a dynein-binding cell-penetrating peptide, using a bioorthogonal reaction. The choice of ZIF-8 and UiO-67, both 150 nm in size but with distinct coordination and surface chemistries, is pivotal due to their differing acid and base stability characteristics, which may potentially influence their performance in cellular environments. To track their performance , the NMOFs were loaded with cresyl violet, a common histological stain and lysosomal marker. Cellular internalization of the surface-functionalized NMOFs was markedly governed by their distinct (macro)molecule characteristics. This demonstrates that surface properties critically influence uptake efficiency, while also highlighting the versatility and effectiveness of the proposed coating strategy. In particular, the one functionalized with the dynein-binding peptide demonstrated a markedly higher rate of cellular internalization compared to other NMOFs. In contrast, derivatizations with mannose and poly(ethylene glycol) are associated with a substantial reduction in cellular uptake, suggesting stealth behavior. These results provide a bioorthogonal and versatile alternative for the external surface engineering of NMOFs, aiming to improve targeted drug delivery effectiveness.
纳米级微孔金属有机框架(NMOFs)作为多功能药物递送系统,能够在复杂的微环境中穿梭并与特定组织中的细胞相互作用。NMOFs的物理化学性质,如尺寸、组成、孔隙率、胶体稳定性和外表面功能化,对于其作为高效载体的成功应用至关重要。本研究引入了一种灵活的、可点击的涂层,该涂层使用用二苯并环辛炔基团衍生化的两亲聚合物作为通用的合成后功能化工具。为了证明其通用性,制备了具有不同结构和组成(UiO-67、NU-1000、PCN-222和ZIF-8)的高单分散性纳米级MOFs,并用可点击的两亲聚合物进行了涂层。所得的聚合物涂层NMOFs在不同的生物相关介质中表现出优异的胶体和结构稳定性。为了进行比较,我们选择了两种尺寸相当的NMOFs,ZIF-8和UiO-67,它们使用生物正交反应,用一系列生物相关的叠氮化物衍生化(大)分子进行功能化,这些分子包括聚乙二醇、甘露糖和一种与动力蛋白结合的细胞穿透肽。选择尺寸均为150nm但具有不同配位和表面化学性质的ZIF-8和UiO-67至关重要,因为它们不同的酸碱稳定性特征可能会潜在地影响它们在细胞环境中的性能。为了追踪它们的性能,NMOFs负载了甲酚紫,一种常见的组织学染色剂和溶酶体标记物。表面功能化NMOFs的细胞内化明显受其独特的(大)分子特征支配。这表明表面性质对摄取效率有至关重要的影响,同时也突出了所提出的涂层策略的通用性和有效性。特别是,用与动力蛋白结合肽功能化的NMOF与其他NMOF相比,表现出明显更高的细胞内化率。相比之下,用甘露糖和聚乙二醇衍生化与细胞摄取的大幅降低有关,表明具有隐身行为。这些结果为NMOFs的外表面工程提供了一种生物正交且通用的替代方法,旨在提高靶向药物递送的有效性。