Suppr超能文献

关于生物物理现实和现象学全脑模型在多个网络分辨率下涌现的时空动力学的稳健性

On the robustness of the emergent spatiotemporal dynamics in biophysically realistic and phenomenological whole-brain models at multiple network resolutions.

作者信息

Dimulescu Cristiana, Strömsdörfer Ronja, Flöel Agnes, Obermayer Klaus

机构信息

Neural Information Processing Group, Fakultät IV, Technische Universität Berlin, Berlin, Germany.

Bernstein Center for Computational Neuroscience, Berlin, Germany.

出版信息

Front Netw Physiol. 2025 Aug 8;5:1589566. doi: 10.3389/fnetp.2025.1589566. eCollection 2025.

Abstract

The human brain is a complex dynamical system which displays a wide range of macroscopic and mesoscopic patterns of neural activity, whose mechanistic origin remains poorly understood. Whole-brain modelling allows us to explore candidate mechanisms causing the observed patterns. However, it is not fully established how the choice of model type and the networks' spatial resolution influence the simulation results, hence, it remains unclear, to which extent conclusions drawn from these results are limited by modelling artefacts. Here, we compare the dynamics of a biophysically realistic, linear-nonlinear cascade model of whole-brain activity with a phenomenological Wilson-Cowan model using three structural connectomes based on the Schaefer parcellation scheme with 100, 200, and 500 nodes. Both neural mass models implement the same mechanistic hypotheses, which specifically address the interaction between excitation, inhibition, and a slow adaptation current which affects the excitatory populations. We quantify the emerging dynamical states in detail and investigate how consistent results are across the different model variants. Then we apply both model types to the specific phenomenon of slow oscillations, which are a prevalent brain rhythm during deep sleep. We investigate the consistency of model predictions when exploring specific mechanistic hypotheses about the effects of both short- and long-range connections and of the antero-posterior structural connectivity gradient on key properties of these oscillations. Overall, our results demonstrate that the coarse-grained dynamics is robust to changes in both model type and network resolution. In some cases, however, model predictions do not generalize. Thus, some care must be taken when interpreting model results.

摘要

人类大脑是一个复杂的动态系统,展现出广泛的宏观和介观神经活动模式,但其机制起源仍知之甚少。全脑建模使我们能够探索导致观察到的模式的候选机制。然而,模型类型的选择和网络的空间分辨率如何影响模拟结果尚未完全明确,因此,从这些结果得出的结论在多大程度上受到建模假象的限制仍不清楚。在这里,我们使用基于Schaefer分割方案的具有100、200和500个节点的三种结构连接组,比较了全脑活动的生物物理现实的线性-非线性级联模型与现象学的Wilson-Cowan模型的动力学。这两种神经质量模型都实现了相同的机制假设,具体涉及兴奋、抑制和影响兴奋性群体的慢适应电流之间的相互作用。我们详细量化了出现的动态状态,并研究了不同模型变体之间结果的一致性。然后,我们将这两种模型类型应用于慢振荡这一特定现象,慢振荡是深度睡眠期间普遍存在的脑节律。在探索关于短程和长程连接以及前后结构连接梯度对这些振荡关键特性影响的特定机制假设时,我们研究了模型预测的一致性。总体而言,我们的结果表明,粗粒度动力学对模型类型和网络分辨率的变化具有鲁棒性。然而,在某些情况下,模型预测并不具有普遍性。因此,在解释模型结果时必须谨慎。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8638/12371574/f531773bfafb/fnetp-05-1589566-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验