Jonaitis Julius, Hibbard Karen L, McCafferty Layte Kaity, Hiramoto Atsuki, Cardona Albert, Truman James W, Nose Akinao, Zwart Maarten F, Pulver Stefan R
School of Psychology and Neuroscience, University of St Andrews, St Andrews, UK.
HHMI Janelia Research Campus, Ashburn, VA, USA.
bioRxiv. 2024 Jun 17:2024.06.17.598162. doi: 10.1101/2024.06.17.598162.
Understanding how animals coordinate movements to achieve goals is a fundamental pursuit in neuroscience. Here we explore how neurons that reside in posterior lower-order regions of a locomotor system project to anterior higher-order regions to influence steering and navigation. We characterized the anatomy and functional role of a population of ascending interneurons in the ventral nerve cord of larvae. Through electron microscopy reconstructions and light microscopy, we determined that the cholinergic 19f cells receive input primarily from premotor interneurons and synapse upon a diverse array of postsynaptic targets within the anterior segments including other 19f cells. Calcium imaging of 19f activity in isolated central nervous system (CNS) preparations in relation to motor neurons revealed that 19f neurons are recruited into most larval motor programmes. 19f activity lags behind motor neuron activity and as a population, the cells encode spatio-temporal patterns of locomotor activity in the larval CNS. Optogenetic manipulations of 19f cell activity in isolated CNS preparations revealed that they coordinate the activity of central pattern generators underlying exploratory headsweeps and forward locomotion in a context and location specific manner. In behaving animals, activating 19f cells suppressed exploratory headsweeps and slowed forward locomotion, while inhibition of 19f activity potentiated headsweeps, slowing forward movement. Inhibiting activity in 19f cells ultimately affected the ability of larvae to remain in the vicinity of an odor source during an olfactory navigation task. Overall, our findings provide insights into how ascending interneurons monitor motor activity and shape interactions amongst rhythm generators underlying complex navigational tasks.
了解动物如何协调运动以实现目标是神经科学的一项基本追求。在这里,我们探讨了位于运动系统后部下位区域的神经元如何投射到前部上位区域以影响转向和导航。我们对幼虫腹神经索中一群上行中间神经元的解剖结构和功能作用进行了表征。通过电子显微镜重建和光学显微镜,我们确定胆碱能19f细胞主要从前运动中间神经元接收输入,并与前部节段内各种不同的突触后靶点形成突触,包括其他19f细胞。在与运动神经元相关的分离中枢神经系统(CNS)制剂中对19f活性进行钙成像显示,19f神经元被纳入大多数幼虫运动程序。19f活性落后于运动神经元活性,并且作为一个群体,这些细胞编码幼虫中枢神经系统中运动活性的时空模式。在分离的中枢神经系统制剂中对19f细胞活性进行光遗传学操作表明,它们以上下文和位置特异性方式协调探索性头部扫描和向前运动背后的中枢模式发生器的活性。在行为动物中,激活19f细胞会抑制探索性头部扫描并减缓向前运动,而抑制19f活性会增强头部扫描,减缓向前运动。抑制19f细胞的活性最终影响了幼虫在嗅觉导航任务中停留在气味源附近的能力。总体而言,我们的研究结果为上行中间神经元如何监测运动活性以及塑造复杂导航任务背后节律发生器之间的相互作用提供了见解。