Lu Chih-Hao, Lee Christina E, Nakamoto Melissa L, Cui Bianxiao
Department of Chemistry, Stanford University, Stanford, California, USA; email:
Wu-Tsai Neuroscience Institute and Sarafan ChEM-H Institute, Stanford University, Stanford, California, USA.
Annu Rev Phys Chem. 2025 Apr;76(1):251-277. doi: 10.1146/annurev-physchem-090722-021151.
No longer viewed as a passive consequence of cellular activities, membrane curvature-the physical shape of the cell membrane-is now recognized as an active constituent of biological processes. Nanoscale topographies on extracellular matrices or substrate surfaces impart well-defined membrane curvatures on the plasma membrane. This review examines biological events occurring at the nano-bio interface, the physical interface between the cell membrane and surface nanotopography, which activates intracellular signaling by recruiting curvature-sensing proteins. We encompass a wide range of biological processes at the nano-bio interface, including cell adhesion, endocytosis, glycocalyx redistribution, regulation of mechanosensitive ion channels, cell migration, and differentiation. Despite the diversity of processes, we call attention to the critical role of membrane curvature in each process. We particularly highlight studies that elucidate molecular mechanisms involving curvature-sensing proteins with the hope of providing comprehensive insights into this rapidly advancing area of research.
细胞膜曲率——细胞膜的物理形状——不再被视为细胞活动的被动结果,现在被认为是生物过程的一个活跃组成部分。细胞外基质或底物表面的纳米级形貌在质膜上赋予明确的膜曲率。本综述研究了在纳米-生物界面发生的生物事件,即细胞膜与表面纳米形貌之间的物理界面,该界面通过招募曲率感知蛋白激活细胞内信号传导。我们涵盖了纳米-生物界面的广泛生物过程,包括细胞粘附、内吞作用、糖萼再分布、机械敏感离子通道的调节、细胞迁移和分化。尽管过程多样,但我们提请注意膜曲率在每个过程中的关键作用。我们特别强调阐明涉及曲率感知蛋白分子机制的研究,希望能对这个快速发展的研究领域提供全面的见解。