Min Youngho, Kim Young Rock, Hyon YunKyong, Ha Taeyoung, Lee Sunju, Hyun Jinwoo, Lee Mi Ra
Ingenium College of Liberal Arts, Kwangwoon University, Seoul, 01897, Republic of Korea.
Major in Mathematics Education, Graduate School of Education, Hankuk University of Foreign Studies, Seoul, 02450, Republic of Korea.
Sci Rep. 2025 Apr 21;15(1):13681. doi: 10.1038/s41598-025-97724-7.
In this study, we investigate appropriate machine learning methods for predicting agricultural commodity prices. Since environmental factors including weather affect price fluctuations of agricultural commodities, we constructed a multivariate time series dataset combining wholesale prices of four agricultural commodities in South Korea, six weather variables, and week numbers. We adopted two prominent prediction methods based on recurrent neural networks (RNN) and graph neural networks (GNN): one is the stacked long short-term memory, and the other consists of two GNN-based methods, the spectral temporal graph neural network (StemGNN) and the temporal graph convolutional network. Also, we utilized a univariate prediction model as a control to evaluate the effectiveness of the multivariate approach for predicting agricultural commodity prices. In this investigation, we applied five different smoothing time window lengths to evaluate the effect of mitigating short-term fluctuations on the predictive performance of the models. The experimental results showed that the mitigation of short-term fluctuations had a greater impact on improving the performance of multivariate prediction models compared to the univariate prediction model. Among the multivariate prediction models, the GNN-based network outperformed the RNN-based network. In view of the trained model, we analyzed the main weather variables affecting agricultural commodity prices by utilizing the adjacency weight matrices in the self-attention mechanism of StemGNN.
在本研究中,我们探究用于预测农产品价格的合适机器学习方法。由于包括天气在内的环境因素会影响农产品价格波动,我们构建了一个多变量时间序列数据集,该数据集结合了韩国四种农产品的批发价格、六个天气变量和周数。我们采用了基于循环神经网络(RNN)和图神经网络(GNN)的两种突出预测方法:一种是堆叠长短期记忆网络,另一种由两种基于GNN的方法组成,即谱时域图神经网络(StemGNN)和时域图卷积网络。此外,我们使用单变量预测模型作为对照,以评估多变量方法预测农产品价格的有效性。在本次调查中,我们应用了五种不同的平滑时间窗口长度,以评估减轻短期波动对模型预测性能的影响。实验结果表明,与单变量预测模型相比,减轻短期波动对提高多变量预测模型的性能有更大影响。在多变量预测模型中,基于GNN的网络优于基于RNN的网络。鉴于训练好的模型,我们利用StemGNN自注意力机制中的邻接权重矩阵,分析了影响农产品价格的主要天气变量。