Jin Ming, Koh Huan Yee, Wen Qingsong, Zambon Daniele, Alippi Cesare, Webb Geoffrey I, King Irwin, Pan Shirui
IEEE Trans Pattern Anal Mach Intell. 2024 Dec;46(12):10466-10485. doi: 10.1109/TPAMI.2024.3443141. Epub 2024 Nov 6.
Time series are the primary data type used to record dynamic system measurements and generated in great volume by both physical sensors and online processes (virtual sensors). Time series analytics is therefore crucial to unlocking the wealth of information implicit in available data. With the recent advancements in graph neural networks (GNNs), there has been a surge in GNN-based approaches for time series analysis. These approaches can explicitly model inter-temporal and inter-variable relationships, which traditional and other deep neural network-based methods struggle to do. In this survey, we provide a comprehensive review of graph neural networks for time series analysis (GNN4TS), encompassing four fundamental dimensions: forecasting, classification, anomaly detection, and imputation. Our aim is to guide designers and practitioners to understand, build applications, and advance research of GNN4TS. At first, we provide a comprehensive task-oriented taxonomy of GNN4TS. Then, we present and discuss representative research works and introduce mainstream applications of GNN4TS. A comprehensive discussion of potential future research directions completes the survey. This survey, for the first time, brings together a vast array of knowledge on GNN-based time series research, highlighting foundations, practical applications, and opportunities of graph neural networks for time series analysis.
时间序列是用于记录动态系统测量值的主要数据类型,由物理传感器和在线过程(虚拟传感器)大量生成。因此,时间序列分析对于挖掘现有数据中隐含的丰富信息至关重要。随着图神经网络(GNN)的最新进展,基于GNN的时间序列分析方法激增。这些方法可以明确地对时间和变量间的关系进行建模,而传统的和其他基于深度神经网络的方法则难以做到这一点。在本次综述中,我们对用于时间序列分析的图神经网络(GNN4TS)进行了全面回顾,涵盖四个基本维度:预测、分类、异常检测和插补。我们的目的是指导设计者和从业者理解、构建应用程序并推进GNN4TS的研究。首先,我们提供了一个全面的面向任务的GNN4TS分类法。然后,我们展示并讨论了代表性的研究工作,并介绍了GNN4TS的主流应用。对潜在未来研究方向的全面讨论完成了本次综述。本次综述首次汇集了大量关于基于GNN的时间序列研究的知识,突出了图神经网络在时间序列分析中的基础、实际应用和机遇。