Al Hasan Shakib, Mahim S M, Hossen Md Emamul, Hasan Md Olid, Islam Md Khairul, Livreri Patrizia, Khan Salah Uddin, Alibakhshikenari Mohammad, Miah Md Sipon
Department of Biomedical Engineering, Islamic University, Kushtia, 7003, Bangladesh.
Bio-Imaging Research Lab, BME, Islamic University, Kushtia, 7003, Bangladesh.
Sci Rep. 2025 Apr 22;15(1):13815. doi: 10.1038/s41598-025-98464-4.
Brain tumor segmentation remains challenging in medical imaging with conventional therapies and rehabilitation owing to the complex morphology and heterogeneous nature of tumors. Although convolutional neural networks (CNNs) have advanced medical image segmentation, they struggle with long-range dependencies because of their limited receptive fields. We propose Dual-Stream Iterative Transformer UNet (DSIT-UNet), a novel framework that combines Iterative Transformer (IT) modules with a dual-stream encoder-decoder architecture. Our model incorporates a transformed spatial-hybrid attention optimization (TSHAO) module to enhance multiscale feature interactions and balance local details with the global context. We evaluated DSIT-UNet using three benchmark datasets: The Cancer Imaging Archive (TCIA) from The Cancer Genome Atlas (TCGA), BraTS2020, and BraTS2021. On TCIA, our model achieved a Mean Intersection over Union of 95.21%, mean Dice Coefficient of 96.23%, precision of 95.91%, and recall of 96.55%. BraTS2020 attained a Mean IoU of 95.88%, mDice of 96.32%, precision of 96.21%, and recall of 96.44%, surpassing the performance of the existing methods. The superior results of DSIT-UNet demonstrate its effectiveness in capturing tumor boundaries and improving segmentation robustness through hierarchical attention mechanisms and multiscale feature extraction. This architecture advances automated brain tumor segmentation, with potential applications in clinical neuroimaging and future extensions to 3D volumetric segmentation.
由于肿瘤形态复杂且性质不均一,在传统治疗和康复的医学成像中,脑肿瘤分割仍然具有挑战性。尽管卷积神经网络(CNN)推动了医学图像分割的发展,但由于其感受野有限,在处理长距离依赖关系时存在困难。我们提出了双流迭代Transformer UNet(DSIT-UNet),这是一种将迭代Transformer(IT)模块与双流编码器-解码器架构相结合的新颖框架。我们的模型集成了变换后的空间混合注意力优化(TSHAO)模块,以增强多尺度特征交互,并在局部细节与全局上下文之间取得平衡。我们使用三个基准数据集对DSIT-UNet进行了评估:来自癌症基因组图谱(TCGA)的癌症成像存档(TCIA)、BraTS2020和BraTS2021。在TCIA上,我们的模型实现了95.21%的平均交并比、96.23%的平均Dice系数、95.91%的精度和96.55%的召回率。在BraTS2020上,平均交并比达到95.88%,mDice为96.32%,精度为96.21%,召回率为96.44%,超过了现有方法的性能。DSIT-UNet的优异结果证明了其通过分层注意力机制和多尺度特征提取来捕获肿瘤边界和提高分割鲁棒性的有效性。这种架构推动了脑肿瘤自动分割的发展,在临床神经成像中具有潜在应用,并有望在未来扩展到3D体积分割。