Al-Juhani Abdulkreem Abdullah, Gaber Arwa Mohammad, Desoky Rodan Mahmoud, Binshalhoub Abdulaziz A, Alzahrani Mohammed Jamaan, Alraythi Mofareh Shubban, Showail Saleh, Aseeri Amjad Aoussi
Department of Surgery, King Abdulaziz University Hospital, Jeddah, Saudi Arabia.
College of Medicine, Alfaisal University, Riyadh, Saudi Arabia.
Forensic Sci Med Pathol. 2025 Apr 21. doi: 10.1007/s12024-025-01002-x.
Estimating post-mortem interval (PMI) is crucial for forensic timelines, yet traditional methods are prone to errors from witness testimony and biological markers sensitive to environmental factors. New molecular and microbial techniques, such as DNA degradation patterns and bacterial community analysis, have shown promise by improving PMI estimation accuracy and reliability over traditional methods. Machine learning further enhances PMI estimation by leveraging complex microbial data. This review addresses the gap by systematically analyzing how microbiome-based PMI predictions compare across organs, environments, and machine learning techniques.
We retrieved relevant articles up to September 2024 from PubMed, Scopus, Web of Science, IEEE, and Cochrane Library. Data were extracted from eligible studies by two independent reviewers. This included the number and species of subjects, tissue sample used, PMI range in the study, machine learning algorithms, and model performance.
We gathered 1252 records from five databases after excluding 750 duplicates. After screening titles and abstracts, 43 records were assessed for eligibility, resulting in 28 included articles. Our ranking of machine learning models for PMI estimation identified the top five based on error metrics and explained variance. Wang (2024) achieved a mean absolute error (MAE) of 6.93 h with a random forests (RF) model. Liu (2020) followed with an MAE of 14.483 h using a neural network. Cui (2022) used soil samples for PMI predictions up to 36 days, reaching an MAE of 1.27 days. Yang (2023) employed an RF model using soil samples, achieving an MAE of 1.567 days in summer and an MAE of 2.001 days in winter. Belk (2018) an RF model on spring soil samples with 16S rRNA data, attaining an MAE of 48 accumulated day degrees (ADD) (~ 3-5 days) across a PMI range of 142 days.
Machine learning models, particularly RF, have demonstrated effectiveness in PMI estimation when combined with 16S rRNA and soil samples. However, improving model performance requires standardized parameters and validation across diverse forensic environments.
估计死后间隔时间(PMI)对于法医时间线至关重要,但传统方法容易受到证人证词以及对环境因素敏感的生物标志物的影响而出现误差。新的分子和微生物技术,如DNA降解模式和细菌群落分析,通过比传统方法提高PMI估计的准确性和可靠性,已显示出前景。机器学习通过利用复杂的微生物数据进一步增强了PMI估计。本综述通过系统分析基于微生物组的PMI预测在不同器官、环境和机器学习技术之间的比较来填补这一空白。
我们从PubMed、Scopus、Web of Science、IEEE和Cochrane图书馆检索了截至2024年9月的相关文章。由两名独立评审员从符合条件的研究中提取数据。这包括受试者的数量和种类、使用的组织样本、研究中的PMI范围、机器学习算法以及模型性能。
在排除750条重复记录后,我们从五个数据库中收集了1252条记录。在筛选标题和摘要后,对43条记录进行了资格评估,最终纳入28篇文章。我们对用于PMI估计的机器学习模型的排名根据误差指标和解释方差确定了前五个模型。Wang(2024年)使用随机森林(RF)模型实现了平均绝对误差(MAE)为6.93小时。Liu(2020年)使用神经网络的MAE为14.483小时。Cui(2022年)使用土壤样本进行长达36天的PMI预测,MAE达到1.27天。Yang(2023年)使用土壤样本的RF模型,夏季的MAE为1.567天,冬季为2.001天。Belk(2018年)在春季土壤样本上使用具有16S rRNA数据的RF模型,在142天的PMI范围内,累积日度数(ADD)的MAE为48(约3 - 5天)。
机器学习模型,特别是RF,在与16S rRNA和土壤样本结合时,已证明在PMI估计中有效。然而,提高模型性能需要标准化参数并在不同的法医环境中进行验证。