Suppr超能文献

法医微生物学的发展趋势:从经典方法到深度学习

Trends in forensic microbiology: From classical methods to deep learning.

作者信息

Yuan Huiya, Wang Ziwei, Wang Zhi, Zhang Fuyuan, Guan Dawei, Zhao Rui

机构信息

Department of Forensic Analytical Toxicology, China Medical University School of Forensic Medicine, Shenyang, China.

Liaoning Province Key Laboratory of Forensic Bio-Evidence Science, Shenyang, China.

出版信息

Front Microbiol. 2023 Mar 30;14:1163741. doi: 10.3389/fmicb.2023.1163741. eCollection 2023.

Abstract

Forensic microbiology has been widely used in the diagnosis of causes and manner of death, identification of individuals, detection of crime locations, and estimation of postmortem interval. However, the traditional method, microbial culture, has low efficiency, high consumption, and a low degree of quantitative analysis. With the development of high-throughput sequencing technology, advanced bioinformatics, and fast-evolving artificial intelligence, numerous machine learning models, such as RF, SVM, ANN, DNN, regression, PLS, ANOSIM, and ANOVA, have been established with the advancement of the microbiome and metagenomic studies. Recently, deep learning models, including the convolutional neural network (CNN) model and CNN-derived models, improve the accuracy of forensic prognosis using object detection techniques in microorganism image analysis. This review summarizes the application and development of forensic microbiology, as well as the research progress of machine learning (ML) and deep learning (DL) based on microbial genome sequencing and microbial images, and provided a future outlook on forensic microbiology.

摘要

法医微生物学已广泛应用于死因和死亡方式的诊断、个体识别、犯罪地点检测以及死后间隔时间的估计。然而,传统方法——微生物培养,效率低、消耗高且定量分析程度低。随着高通量测序技术、先进生物信息学以及快速发展的人工智能的发展,随着微生物组和宏基因组研究的推进,已经建立了许多机器学习模型,如随机森林(RF)、支持向量机(SVM)、人工神经网络(ANN)、深度神经网络(DNN)、回归分析、偏最小二乘法(PLS)、相似性分析(ANOSIM)和方差分析(ANOVA)。最近,包括卷积神经网络(CNN)模型和基于CNN的衍生模型在内的深度学习模型,通过在微生物图像分析中使用目标检测技术提高了法医预后的准确性。本文综述了法医微生物学的应用与发展,以及基于微生物基因组测序和微生物图像的机器学习(ML)和深度学习(DL)的研究进展,并对法医微生物学的未来发展进行了展望。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b128/10098119/1e56db1489c4/fmicb-14-1163741-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验