文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

医疗保健领域中关于ChatGPT的公众与学术话语:混合方法研究

Public Versus Academic Discourse on ChatGPT in Health Care: Mixed Methods Study.

作者信息

Baxter Patrick, Li Meng-Hao, Wei Jiaxin, Koizumi Naoru

机构信息

Schar School of Policy and Government, George Mason University, 3351 Fairfax Dr, Arlington, VA, 22201, United States, 1 (703) 993-8999.

出版信息

JMIR Infodemiology. 2025 Jun 23;5:e64509. doi: 10.2196/64509.


DOI:10.2196/64509
PMID:40550010
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12208614/
Abstract

BACKGROUND: The rapid emergence of artificial intelligence-based large language models (LLMs) in 2022 has initiated extensive discussions within the academic community. While proponents highlight LLMs' potential to improve writing and analytical tasks, critics caution against the ethical and cultural implications of widespread reliance on these models. Existing literature has explored various aspects of LLMs, including their integration, performance, and utility, yet there is a gap in understanding the nature of these discussions and how public perception contrasts with expert opinion in the field of public health. OBJECTIVE: This study sought to explore how the general public's views and sentiments regarding LLMs, using OpenAI's ChatGPT as an example, differ from those of academic researchers and experts in the field, with the goal of gaining a more comprehensive understanding of the future role of LLMs in health care. METHODS: We used a hybrid sentiment analysis approach, integrating the Syuzhet package in R (R Core Team) with GPT-3.5, achieving an 84% accuracy rate in sentiment classification. Also, structural topic modeling was applied to identify and analyze 8 key discussion topics, capturing both optimistic and critical perspectives on LLMs. RESULTS: Findings revealed a predominantly positive sentiment toward LLM integration in health care, particularly in areas such as patient care and clinical decision-making. However, concerns were raised regarding their suitability for mental health support and patient communication, highlighting potential limitations and ethical challenges. CONCLUSIONS: This study underscores the transformative potential of LLMs in public health while emphasizing the need to address ethical and practical concerns. By comparing public discourse with academic perspectives, our findings contribute to the ongoing scholarly debate on the opportunities and risks associated with LLM adoption in health care.

摘要

背景:2022年基于人工智能的大型语言模型(LLMs)迅速出现,引发了学术界的广泛讨论。虽然支持者强调大型语言模型在改进写作和分析任务方面的潜力,但批评者则告诫人们要警惕广泛依赖这些模型所带来的伦理和文化影响。现有文献已经探讨了大型语言模型的各个方面,包括它们的整合、性能和效用,但在理解这些讨论的本质以及公众认知与公共卫生领域专家意见的对比方面仍存在差距。 目的:本研究旨在探讨以OpenAI的ChatGPT为例,公众对大型语言模型的看法和情绪与该领域学术研究人员和专家的看法有何不同,目的是更全面地了解大型语言模型在医疗保健中的未来作用。 方法:我们采用了一种混合情感分析方法,将R语言(R核心团队)中的Syuzhet软件包与GPT-3.5相结合,在情感分类方面达到了84%的准确率。此外,还应用了结构主题建模来识别和分析8个关键讨论主题,捕捉对大型语言模型的乐观和批判性观点。 结果:研究结果显示,人们对大型语言模型在医疗保健中的整合普遍持积极态度,特别是在患者护理和临床决策等领域。然而,人们对其在心理健康支持和患者沟通方面的适用性表示担忧,凸显了潜在的局限性和伦理挑战。 结论:本研究强调了大型语言模型在公共卫生方面的变革潜力,同时强调需要解决伦理和实际问题。通过将公众话语与学术观点进行比较,我们的研究结果有助于正在进行的关于在医疗保健中采用大型语言模型所带来的机遇和风险的学术辩论。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f62f/12208614/6e57ac5edc59/infodemiology-v5-e64509-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f62f/12208614/6e57ac5edc59/infodemiology-v5-e64509-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f62f/12208614/6e57ac5edc59/infodemiology-v5-e64509-g001.jpg

相似文献

[1]
Public Versus Academic Discourse on ChatGPT in Health Care: Mixed Methods Study.

JMIR Infodemiology. 2025-6-23

[2]
Using Generative Artificial Intelligence in Health Economics and Outcomes Research: A Primer on Techniques and Breakthroughs.

Pharmacoecon Open. 2025-4-29

[3]
Public Perception of the Brain-Computer Interface Based on a Decade of Data on X: Mixed Methods Study.

JMIR Form Res. 2025-6-25

[4]
Large Language Model Architectures in Health Care: Scoping Review of Research Perspectives.

J Med Internet Res. 2025-6-19

[5]
Comparison of ChatGPT and Internet Research for Clinical Research and Decision-Making in Occupational Medicine: Randomized Controlled Trial.

JMIR Form Res. 2025-5-20

[6]
Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19.

Cochrane Database Syst Rev. 2022-5-20

[7]
Large Language Models in Medical Diagnostics: Scoping Review With Bibliometric Analysis.

J Med Internet Res. 2025-6-9

[8]
Survivor, family and professional experiences of psychosocial interventions for sexual abuse and violence: a qualitative evidence synthesis.

Cochrane Database Syst Rev. 2022-10-4

[9]
Applications of Large Language Models in the Field of Suicide Prevention: Scoping Review.

J Med Internet Res. 2025-1-23

[10]
Public Health Messaging on Twitter During the COVID-19 Pandemic: Observational Study.

J Med Internet Res. 2025-2-5

本文引用的文献

[1]
Mixed methods assessment of the influence of demographics on medical advice of ChatGPT.

J Am Med Inform Assoc. 2024-9-1

[2]
ChatGPT in private practice: The opportunities and pitfalls of novel technology.

Australas Psychiatry. 2024-6

[3]
ChatGPT and mental health: Friends or foes?

Health Sci Rep. 2024-2-15

[4]
ChatGPT in healthcare: A taxonomy and systematic review.

Comput Methods Programs Biomed. 2024-3

[5]
Artificial intelligence, ChatGPT, and other large language models for social determinants of health: Current state and future directions.

Cell Rep Med. 2024-1-16

[6]
Chatbots, generative AI, and scholarly manuscripts: WAME recommendations on chatbots and generative artificial intelligence in relation to scholarly publications.

Colomb Med (Cali). 2023

[7]
A structural approach to detecting opinion leaders in Twitter by random matrix theory.

Sci Rep. 2023-12-8

[8]
The Accuracy and Potential Racial and Ethnic Biases of GPT-4 in the Diagnosis and Triage of Health Conditions: Evaluation Study.

JMIR Med Educ. 2023-11-2

[9]
The Potential of ChatGPT as a Self-Diagnostic Tool in Common Orthopedic Diseases: Exploratory Study.

J Med Internet Res. 2023-9-15

[10]
Beyond human expertise: the promise and limitations of ChatGPT in suicide risk assessment.

Front Psychiatry. 2023-8-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索