Peng Zugui, Latag Glenn Villena, Tahara Hiroyuki, Yagi Tohru, Hayashi Tomohiro
Department of Mechanical Engineering, School of Engineering, Institute of Science Tokyo, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan.
Department of Materials Science and Engineering, School of Materials and Chemical Technology, Institute of Science Tokyo, 4259 Nagatsuta-Cho Midori-Ku, Yokohama, Kanagawa 226-8502, Japan.
Nanoscale. 2025 May 9;17(18):11668-11678. doi: 10.1039/d5nr01299f.
Lipid membranes are fundamental elements of cells, serving as barriers that protect the cell interior from the external environment. DNA nanostructures, which can engineer lipid membranes' signal transduction and substance exchange properties, attract interest for their potential applications in the biomedical field. The interaction between DNA nanostructures and lipid membranes is of scientific and technological interest. Here, we investigate the interaction between DNA nanopores (DNPs) and model supported lipid bilayers (SLBs) using real-time quartz crystal microbalance with energy dissipation monitoring (QCM-D). The long observation time and high temporal resolution enable us to visualize the time course of DNPs' interaction with SLBs, including their tethering and incorporating processes. Benefiting from the ability of QCM-D to obtain adsorbed layers' viscoelasticity profiles, we found that the DNPs with three cholesterol tags aggregate and form a rigid layer on the SLB surface during their tethering step. Moreover, our results reveal that the supporting substrates of SLBs impact the incorporation of DNPs, whereby separating the SLBs from the SiO sensor surface with poly(ethylene glycol) (PEG) polymer cushion results in faster incorporation. This study not only sheds light on the behavior of DNPs but also establishes QCM-D as an analytical platform for exploring the interactions of membrane-interacting DNA nanostructures, potentially accelerating advancements in DNA nanotechnology.
脂质膜是细胞的基本组成部分,作为屏障保护细胞内部免受外部环境的影响。DNA纳米结构能够设计脂质膜的信号转导和物质交换特性,因其在生物医学领域的潜在应用而备受关注。DNA纳米结构与脂质膜之间的相互作用具有科学和技术研究价值。在此,我们使用具有能量耗散监测功能的实时石英晶体微天平(QCM-D)研究了DNA纳米孔(DNP)与模型支撑脂质双层(SLB)之间的相互作用。较长的观察时间和高时间分辨率使我们能够可视化DNP与SLB相互作用的时间进程,包括它们的 tethering 和掺入过程。受益于QCM-D获取吸附层粘弹性轮廓的能力,我们发现带有三个胆固醇标签的DNP在其 tethering 步骤中聚集并在SLB表面形成刚性层。此外,我们的结果表明,SLB的支撑底物会影响DNP的掺入,用聚乙二醇(PEG)聚合物垫层将SLB与SiO传感器表面分离会导致更快的掺入。这项研究不仅揭示了DNP的行为,还将QCM-D确立为探索与膜相互作用的DNA纳米结构相互作用的分析平台,可能会加速DNA纳米技术的进展。