Liu Fengyu, Arai Tatsuo, Guo Dezhou, Jiang Zhuangde, Zhao Libo, Liu Xiaoming
National Key Laboratory of Autonomous Intelligent Unmanned Systems, Beijing Institute of Technology, Beijing, 100081, China.
Key Laboratory of Biomimetic Robots and Systems (Ministry of Education), Beijing Institute of Technology, Beijing, 100081, China.
Mater Today Bio. 2025 Jul 26;34:102137. doi: 10.1016/j.mtbio.2025.102137. eCollection 2025 Oct.
Synthetic nanopores, inspired by natural ion channels and nuclear pore complexes, hold immense potential for elucidating cellular transport mechanisms and enhancing molecular sensing technologies. DNA nanotechnology, particularly DNA origami, stands out as a transformative platform for designing biomimetic nanopores, leveraging its biocompatibility, structural programmability, and mechanical tunability. This review traces the structural evolution of DNA nanopores across three phases: early hybrid designs with solid-state platforms, vertically-inserted nanopores in lipid bilayers, and horizontally-arranged nanopores with advanced functionalities. Unlike prior reviews, we integrate this progression with critical insights into limitations-such as stability, scalability, and noise-while highlighting breakthroughs in single-molecule sensing and controlled transmembrane transport. We conclude by outlining strategies for next-generation DNA nanopores, offering a roadmap for their optimization in synthetic biology and nanomedicine.
受天然离子通道和核孔复合体启发的合成纳米孔,在阐明细胞运输机制和增强分子传感技术方面具有巨大潜力。DNA纳米技术,尤其是DNA折纸术,凭借其生物相容性、结构可编程性和机械可调性,成为设计仿生纳米孔的变革性平台。本综述追溯了DNA纳米孔在三个阶段的结构演变:与固态平台的早期混合设计、脂质双层中垂直插入的纳米孔,以及具有先进功能的水平排列纳米孔。与以往的综述不同,我们将这一进展与对稳定性、可扩展性和噪声等局限性的关键见解相结合,同时突出单分子传感和受控跨膜运输方面的突破。我们通过概述下一代DNA纳米孔的策略来得出结论,为其在合成生物学和纳米医学中的优化提供路线图。