Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
ACS Synth Biol. 2021 May 21;10(5):1053-1063. doi: 10.1021/acssynbio.0c00563. Epub 2021 Mar 15.
CRISPR/Cas9-mediated base editors, based on cytidine deaminase or adenosine deaminase, are emerging genetic technologies that facilitate genomic manipulation in many organisms. Since base editing is free from DNA double-strand breaks (DSBs), it has certain advantages, such as a lower toxicity, compared to the traditional DSB-based genome engineering technologies. In terms of , a base editing method has been successfully applied in several model and non-model species, such as and . In this study, we first proved that BE2 (rAPOBEC1-dCas9-UGI) and BE3 (rAPOBEC1-nCas9-UGI) were functional base editing tools in 66, albeit with a much lower editing efficiency compared to that of . Uracil generated in deamination is a key intermediate in the base editing process, and it can be hydrolyzed by uracil DNA glycosidase (UDG) involved in the intracellular base excision repair, resulting in a low base editing efficiency. By knocking out two endogenous UDGs (UDG1 and UDG2), we managed to improve the base editing efficiency by 3.4-67.4-fold among different loci. However, the inactivation of UDG is detrimental to the genome stability and future application of engineered strains. Therefore, we finally developed ntiense interference-enhanced CRISPR/Cas9 ase diting method (asRNA-BE) to transiently disrupt the expression of uracil DNA glycosidases during base editing, leading to a 2.8-65.8-fold enhanced editing efficiency and better genome stability. Our results demonstrate that asRNA-BE is a much better editing tool for base editing in 66 and might be beneficial for improving the base editing efficiency and genome stability in other strains.
CRISPR/Cas9 介导的碱基编辑器,基于胞嘧啶脱氨酶或腺嘌呤脱氨酶,是新兴的遗传技术,可促进许多生物的基因组操作。由于碱基编辑不涉及 DNA 双链断裂(DSB),与传统的基于 DSB 的基因组工程技术相比,它具有一定的优势,例如毒性更低。在,一种碱基编辑方法已成功应用于几种模式和非模式物种,如 和 。在本研究中,我们首先证明 BE2(rAPOBEC1-dCas9-UGI)和 BE3(rAPOBEC1-nCas9-UGI)在 66 中是功能性碱基编辑工具,尽管与 相比,编辑效率要低得多。脱氨酶介导的脱氨产生的尿嘧啶是碱基编辑过程中的关键中间体,它可以被参与细胞内碱基切除修复的尿嘧啶 DNA 糖基化酶(UDG)水解,导致碱基编辑效率较低。通过敲除两个内源性 UDG(UDG1 和 UDG2),我们成功地将不同基因座的碱基编辑效率提高了 3.4-67.4 倍。然而,UDG 的失活不利于基因组稳定性和工程菌株的未来应用。因此,我们最终开发了 ntiense 干扰增强的 CRISPR/Cas9 酶编辑方法(asRNA-BE),以在碱基编辑过程中瞬时破坏尿嘧啶 DNA 糖苷酶的表达,从而将编辑效率提高了 2.8-65.8 倍,同时保持了更好的基因组稳定性。我们的结果表明,asRNA-BE 是 66 中碱基编辑的更好编辑工具,可能有助于提高其他 菌株的碱基编辑效率和基因组稳定性。