Suppr超能文献

基于生成对抗网络的多序列3-T图像从64-mT低场强磁共振成像合成在多发性硬化症中的应用

Multisequence 3-T Image Synthesis from 64-mT Low-Field-Strength MRI Using Generative Adversarial Networks in Multiple Sclerosis.

作者信息

Lucas Alfredo, Arnold Thomas Campbell, Okar Serhat V, Vadali Chetan, Kawatra Karan D, Ren Zheng, Cao Quy, Shinohara Russell T, Schindler Matthew K, Davis Kathryn A, Litt Brian, Reich Daniel S, Stein Joel M

机构信息

Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pa.

Department of Bioengineering, Center for Neuroengineering and Therapeutics, University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA 19104.

出版信息

Radiology. 2025 Apr;315(1):e233529. doi: 10.1148/radiol.233529.

Abstract

Background Portable low-field-strength (64-mT) MRI scanners show promise for increasing access to neuroimaging for clinical and research purposes; however, these devices produce lower-quality images than conventional high-field-strength scanners. Purpose To develop and evaluate a deep learning architecture to generate high-field-strength quality brain images from low-field-strength inputs using paired data from patients with multiple sclerosis (MS) who underwent MRI at 64 mT and 3 T. Materials and Methods Adults with MS at two institutions were scanned using portable 64-mT and standard 3-T scanners, with T1-weighted, T2-weighted, and fluid-attenuated inversion recovery (FLAIR) acquisitions as part of an observational study (October 2020 to January 2022); a second validation group (January 2023 to January 2024) was also included. Using paired data, a generative adversarial network architecture for low- to high-field-strength image translation, called LowGAN, was developed. Synthetic images were evaluated with respect to image quality (eg, structural similarity index), brain morphometry, and white matter lesions. Nonparametric Wilcoxon tests were used for comparison of image quality and morphometry, and Dice scores were used for comparison of lesion segmentations. Results A total of 50 participants (median age, 47 years [IQR, 38-56 years]; 38 female) were included in the main group, and 13 participants were included in the validation group (median age, 41 years [IQR 35-53 years]; 11 female). Compared with low-field-strength input images, LowGAN synthetic high-field-strength images were visually higher in quality and showed higher structural similarity index relative to actual high-field-strength images for T1-weighted (0.87 vs 0.82; < .001) and FLAIR (0.88 vs 0.85; < .001) contrasts. Cerebral cortex volumes in LowGAN outputs did not differ significantly from 3-T measurements (483.6 cm vs 482.1 cm; = .99). For white matter lesions, LowGAN increased lesion segmentation Dice scores relative to 3-T imaging when compared with native 64-mT images (0.32 vs 0.28; < .001). Conclusion Application of LowGAN super-resolution to ultralow-field-strength MRI improved image quality compared with standard-of-care ultralow-field-strength images. © RSNA, 2025 See also the editorial by Wang and Zaharchuk in this issue.

摘要

背景 便携式低场强(64 mT)MRI扫描仪有望增加临床和研究中神经成像的可及性;然而,这些设备产生的图像质量低于传统的高场强扫描仪。目的 开发并评估一种深度学习架构,利用来自在64 mT和3 T场强下接受MRI检查的多发性硬化症(MS)患者的配对数据,从低场强输入生成高场强质量的脑图像。材料与方法 两个机构的成年MS患者使用便携式64 mT和标准3 T扫描仪进行扫描,作为一项观察性研究(2020年10月至2022年1月)的一部分,采集T1加权、T2加权和液体衰减反转恢复(FLAIR)图像;还纳入了第二个验证组(2023年1月至2024年1月)。利用配对数据,开发了一种用于低场强到高场强图像转换的生成对抗网络架构,称为LowGAN。对合成图像进行图像质量(如结构相似性指数)、脑形态测量和白质病变方面的评估。采用非参数Wilcoxon检验比较图像质量和形态测量,采用Dice分数比较病变分割。结果 主要组共纳入50名参与者(中位年龄47岁[四分位间距,38 - 56岁];38名女性),验证组纳入13名参与者(中位年龄41岁[四分位间距35 - 53岁];11名女性)。与低场强输入图像相比,LowGAN合成的高场强图像在视觉上质量更高,并在T1加权(0.87对0.82;<0.001)和FLAIR(0.88对0.85;<0.001)对比中相对于实际高场强图像显示出更高的结构相似性指数。LowGAN输出的大脑皮质体积与3 T测量值无显著差异(483.6 cm³对482.1 cm³;P = 0.99)。对于白质病变,与原始64 mT图像相比,LowGAN与3 T成像相比增加了病变分割的Dice分数(0.32对0.28;<0.001)。结论 与标准的超低场强MRI图像相比,将LowGAN超分辨率应用于超低场强MRI可提高图像质量。©RSNA,2025 另见本期Wang和Zaharchuk的社论。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验