Chen Xiaowen, Winiarksi Maciej, Puścian Alicja, Knapska Ewelina, Mora Thierry, Walczak Aleksandra M
Laboratoire de physique de l'École normale supérieure, CNRS, PSL University, Sorbonne Université, Université Paris Cité, Paris, France.
Center of Excellence for Neural Plasticity and Brain Disorders, BRAINCITY, a Nencki-EMBL Partnership, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland.
Elife. 2025 Apr 22;13:RP94999. doi: 10.7554/eLife.94999.
In social behavior research, the focus often remains on animal dyads, limiting the understanding of complex interactions. Recent trends favor naturalistic setups, offering unique insights into intricate social behaviors. Social behavior stems from chance, individual preferences, and group dynamics, necessitating high-resolution quantitative measurements and statistical modeling. This study leverages the Eco-HAB system, an automated experimental setup that employs radiofrequency identification tracking to observe naturally formed mouse cohorts in a controlled yet naturalistic setting, and uses statistical inference models to decipher rules governing the collective dynamics of groups of 10-15 individuals. Applying maximum entropy models on the coarse-grained co-localization patterns of mice unveils social rules in mouse hordes, quantifying sociability through pairwise interactions within groups, the impact of individual versus social preferences, and the effects of considering interaction structures among three animals instead of two. Reproducing co-localization patterns of individual mice reveals stability over time, with the statistics of the inferred interaction strength capturing social structure. By separating interactions from individual preferences, the study demonstrates that altering neuronal plasticity in the prelimbic cortex - the brain structure crucial for sociability - does not eliminate signatures of social interactions, but makes the transmission of social information between mice more challenging. The study demonstrates how the joint probability distribution of the mice positions can be used to quantify sociability.
在社会行为研究中,重点往往仍放在动物二元组上,这限制了对复杂互动的理解。最近的趋势倾向于自然主义的设置,为深入了解复杂的社会行为提供了独特的见解。社会行为源于机遇、个体偏好和群体动态,这就需要高分辨率的定量测量和统计建模。本研究利用了生态习性(Eco-HAB)系统,这是一种自动化实验装置,它采用射频识别跟踪技术,在可控但自然的环境中观察自然形成的小鼠群体,并使用统计推断模型来解读支配10至15个个体群体集体动态的规则。在小鼠的粗粒度共定位模式上应用最大熵模型,揭示了小鼠群体中的社会规则,通过群体内的两两互动、个体偏好与社会偏好的影响以及考虑三只动物而非两只动物之间的互动结构的影响来量化社交性。再现个体小鼠的共定位模式揭示了随时间的稳定性,推断出的互动强度统计数据捕捉到了社会结构。通过将互动与个体偏好分离,该研究表明,改变前边缘皮层(对社交性至关重要的脑结构)中的神经元可塑性,并不会消除社会互动的特征,但会使小鼠之间的社会信息传递更具挑战性。该研究展示了如何利用小鼠位置的联合概率分布来量化社交性。