Suppr超能文献

一种整合临床和磁共振成像(MRI)数据的多模态机器学习模型,用于预测颈椎脊髓损伤手术治疗后的神经学预后。

A multimodal machine learning model integrating clinical and MRI data for predicting neurological outcomes following surgical treatment for cervical spinal cord injury.

作者信息

Shimizu Tomoaki, Inomata Kento, Suda Kota, Matsumoto Harmon Satoko, Komatsu Miki, Ota Masahiro, Ushirozako Hiroki, Minami Akio, Maki Satoshi, Endo Tsutomu, Yamada Katsuhisa, Iwasaki Norimasa, Takahashi Hiroshi, Yamazaki Masashi, Koda Masao

机构信息

Hokkaido Spinal Cord Injury Center, Hokkaido, Japan.

University of Tsukuba, Tsukuba, Japan.

出版信息

Eur Spine J. 2025 Apr 22. doi: 10.1007/s00586-025-08873-2.

Abstract

PURPOSE

Predicting the prognosis of cervical spinal cord injury (CSCI) is crucial for patients and healthcare providers, as it informs treatment decisions and rehabilitation planning. This study aimed to develop a multimodal machine learning model integrating clinical and MRI data to predict neurological outcomes in CSCI patients.

METHODS

We conducted a retrospective study of 247 patients with traumatic CSCI who underwent posterior decompression and fusion surgery at a specialized spinal cord injury center between April 2015 and June 2021. Clinical data, including demographics, comorbidities, laboratory data, and neurological findings, were collected. T2-weighted sagittal MRI images were analyzed using a convolutional neural network pre-trained on RadImageNet. Clinical and MRI features were integrated to construct a multimodal predictive model using the Light Gradient Boosting Machine algorithm, validated with 5-fold cross-validation. The primary outcome was defined as achieving American Spinal Injury Association (ASIA) Impairment Scale (AIS) grade D or higher at 6 months post-injury. Shapley Additive Explanations identified key contributing factors in predicting these neurological outcomes.

RESULTS

The model achieved an accuracy of 0.90 and an AUC of 0.94 for predicting recovery to AIS grade D or higher at 6 months post-injury. Key predictors included lower extremity ASIA motor score (AMS), AIS grade at admission, upper extremity AMS, age, HbA1c, and MRI-derived features.

CONCLUSION

This multimodal model demonstrated superior predictive accuracy compared to previous monomodal approaches, emphasizing the value of combining clinical and MRI data. These findings highlight the potential of multimodal predictive models in improving clinical decision-making and outcomes for CSCI patients.

摘要

目的

预测颈脊髓损伤(CSCI)的预后对患者和医疗服务提供者至关重要,因为它为治疗决策和康复计划提供依据。本研究旨在开发一种整合临床和MRI数据的多模态机器学习模型,以预测CSCI患者的神经学预后。

方法

我们对247例创伤性CSCI患者进行了一项回顾性研究,这些患者于2015年4月至2021年6月在一家专门的脊髓损伤中心接受了后路减压融合手术。收集了临床数据,包括人口统计学、合并症、实验室数据和神经学检查结果。使用在RadImageNet上预训练的卷积神经网络分析T2加权矢状位MRI图像。整合临床和MRI特征,使用Light梯度提升机算法构建多模态预测模型,并通过五折交叉验证进行验证。主要结局定义为伤后6个月达到美国脊髓损伤协会(ASIA)损伤分级(AIS)D级或更高。Shapley加性解释确定了预测这些神经学预后的关键因素。

结果

该模型在预测伤后6个月恢复到AIS D级或更高方面的准确率为0.90,AUC为0.94。关键预测因素包括下肢ASIA运动评分(AMS)、入院时的AIS分级、上肢AMS、年龄、糖化血红蛋白(HbA1c)和MRI衍生特征。

结论

与先前的单模态方法相比,这种多模态模型显示出更高的预测准确性,强调了结合临床和MRI数据的价值。这些发现突出了多模态预测模型在改善CSCI患者临床决策和预后方面的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验