Akkawi Nicholas R, Nicewicz David A
Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States.
J Am Chem Soc. 2025 May 7;147(18):15482-15489. doi: 10.1021/jacs.5c01788. Epub 2025 Apr 22.
Photochemical transformations continue to serve as powerful synthetic tools for rapid chemical synthesis and diversification. Recent developments in photoredox and photochemical reactivity have captured the attention of researchers in a wide array of disciplines, where many new applications of these reactions have been reported. We disclose the use of photochemical synthetic strategies as a modern approach to natural product synthesis that leverages the inherent reactivity of radicals as a platform for constructing complex scaffolds. We demonstrate this in an iterative photochemical synthesis, offering novel synthetic tactics, mild conditions, and operationally simple synthetic procedures to construct three stemoamide alkaloids in the shortest sequences to date. The key disconnection involves the use of both the oxidative and reductive capabilities of an acridinium photoredox catalyst to forge the densely functionalized tetrahydrofuran ring via a polar radical crossover cycloaddition. The resultant butyrolactone serves as a handle for a radical polar crossover cycloaddition to construct a unique oxaspirocyclic butenolide. Finally, a late-stage heteroarene transmutation provides a linchpin intermediate used to access three stemoamide alkaloids. The efficiency of these syntheses exemplifies the power of this approach while also demonstrating a departure from traditional disconnections and shedding light on a new type of synthetic art.
光化学转化仍然是快速化学合成和多样化的强大合成工具。光氧化还原和光化学反应性的最新进展引起了众多学科研究人员的关注,在这些领域已经报道了这些反应的许多新应用。我们揭示了光化学合成策略作为一种天然产物合成的现代方法,利用自由基的固有反应性作为构建复杂骨架的平台。我们在迭代光化学合成中证明了这一点,提供了新颖的合成策略、温和的条件以及操作简单的合成程序,以迄今为止最短的步骤构建三种斯德莫酰胺生物碱。关键的切断涉及使用吖啶鎓光氧化还原催化剂的氧化和还原能力,通过极性自由基交叉环加成形成密集官能化的四氢呋喃环。所得的丁内酯作为自由基极性交叉环加成的手柄,用于构建独特的氧杂螺环丁烯内酯。最后,后期杂芳烃转化提供了一个关键中间体,用于合成三种斯德莫酰胺生物碱。这些合成的效率体现了这种方法的强大之处,同时也展示了与传统切断方法的不同,并揭示了一种新型的合成技术。