Montazerian Hossein, Davoodi Elham, Wang Canran, Lorestani Farnaz, Li Jiahong, Haghniaz Reihaneh, Sampath Rohan R, Mohaghegh Neda, Khosravi Safoora, Zehtabi Fatemeh, Zhao Yichao, Hosseinzadeh Negar, Liu Tianhan, Hsiai Tzung K, Najafabadi Alireza Hassani, Langer Robert, Anderson Daniel G, Weiss Paul S, Khademhosseini Ali, Gao Wei
David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.
Department of Bioengineering, University of California, Los Angeles, Los Angeles, California, USA.
Nat Commun. 2025 Apr 22;16(1):3755. doi: 10.1038/s41467-025-59045-1.
Bioelectronic devices hold transformative potential for healthcare diagnostics and therapeutics. Yet, traditional electronic implants often require invasive surgeries and are mechanically incompatible with biological tissues. Injectable hydrogel bioelectronics offer a minimally invasive alternative that interfaces with soft tissue seamlessly. A major challenge is the low conductivity of bioelectronic systems, stemming from poor dispersibility of conductive additives in hydrogel mixtures. We address this issue by engineering doping conditions with hydrophilic biomacromolecules, enhancing the dispersibility of conductive polymers in aqueous systems. This approach achieves a 5-fold increase in dispersibility and a 20-fold boost in conductivity compared to conventional methods. The resulting conductive polymers are molecularly and in vivo degradable, making them suitable for transient bioelectronics applications. These additives are compatible with various hydrogel systems, such as alginate, forming ionically cross-linkable conductive inks for 3D-printed wearable electronics toward high-performance physiological monitoring. Furthermore, integrating conductive fillers with gelatin-based bioadhesive hydrogels substantially enhances conductivity for injectable sealants, achieving 250% greater sensitivity in pH sensing for chronic wound monitoring. Our findings indicate that hydrophilic dopants effectively tailor conducting polymers for hydrogel fillers, enhancing their biodegradability and expanding applications in transient implantable biomonitoring.
生物电子设备在医疗诊断和治疗方面具有变革潜力。然而,传统的电子植入物通常需要进行侵入性手术,并且在机械性能上与生物组织不兼容。可注射水凝胶生物电子学提供了一种微创替代方案,能够与软组织无缝对接。一个主要挑战是生物电子系统的电导率较低,这源于导电添加剂在水凝胶混合物中的分散性较差。我们通过用亲水性生物大分子设计掺杂条件来解决这个问题,提高导电聚合物在水性体系中的分散性。与传统方法相比,这种方法使分散性提高了5倍,电导率提高了20倍。所得的导电聚合物在分子水平上和体内均可降解,使其适用于瞬态生物电子应用。这些添加剂与各种水凝胶体系兼容,如藻酸盐,可形成用于3D打印可穿戴电子设备的离子交联导电油墨,以实现高性能的生理监测。此外,将导电填料与明胶基生物粘附水凝胶相结合,可显著提高可注射密封剂的电导率,在慢性伤口监测的pH传感中实现高250%的灵敏度。我们的研究结果表明,亲水性掺杂剂能有效地为水凝胶填料定制导电聚合物,提高其生物可降解性,并扩大其在瞬态可植入生物监测中的应用。