Zhao Xun, Zhou Yihao, Song Yang, Xu Jing, Li Justin, Tat Trinny, Chen Guorui, Li Song, Chen Jun
Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA.
Department of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
Nat Mater. 2024 May;23(5):703-710. doi: 10.1038/s41563-024-01802-6. Epub 2024 Apr 26.
Brownian motion allows microscopically dispersed nanoparticles to be stable in ferrofluids, as well as causes magnetization relaxation and prohibits permanent magnetism. Here we decoupled the particle Brownian motion from colloidal stability to achieve a permanent fluidic magnet with high magnetization, flowability and reconfigurability. The key to create such permanent fluidic magnets is to maintain a stable magnetic colloidal fluid by using non-Brownian magnetic particles to self-assemble a three-dimensional oriented and ramified magnetic network structure in the carrier fluid. This structure has high coercivity and permanent magnetization, with long-term magnetization stability. We establish a scaling theory model to decipher the permanent fluid magnet formation criteria and formulate a general assembly guideline. Further, we develop injectable and retrievable permanent-fluidic-magnet-based liquid bioelectronics for highly sensitive, self-powered wireless cardiovascular monitoring. Overall, our findings highlight the potential of permanent fluidic magnets as an ultrasoft material for liquid devices and systems, from bioelectronics to robotics.
布朗运动使微观分散的纳米颗粒在铁磁流体中保持稳定,同时也会导致磁化弛豫并阻止永磁现象。在此,我们将颗粒的布朗运动与胶体稳定性解耦,以实现具有高磁化强度、流动性和可重构性的永久性流体磁体。制造这种永久性流体磁体的关键在于,通过使用非布朗磁性颗粒在载液中自组装三维定向且分支的磁性网络结构,来维持稳定的磁性胶体流体。这种结构具有高矫顽力和永久磁化强度,具备长期的磁化稳定性。我们建立了一个标度理论模型来解读永久性流体磁体的形成标准,并制定了通用的组装指南。此外,我们还开发了基于可注射和可回收永久性流体磁体的液体生物电子学,用于高灵敏度、自供电的无线心血管监测。总体而言,我们的研究结果凸显了永久性流体磁体作为一种超软材料在从生物电子学到机器人技术等液体设备和系统中的潜力。