Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL 60637, USA.
Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA.
Science. 2023 Aug 11;381(6658):686-693. doi: 10.1126/science.adg8758. Epub 2023 Aug 10.
The use of bioelectronic devices relies on direct contact with soft biotissues. For transistor-type bioelectronic devices, the semiconductors that need to have direct interfacing with biotissues for effective signal transduction do not adhere well with wet tissues, thereby limiting the stability and conformability at the interface. We report a bioadhesive polymer semiconductor through a double-network structure formed by a bioadhesive brush polymer and a redox-active semiconducting polymer. The resulting semiconducting film can form rapid and strong adhesion with wet tissue surfaces together with high charge-carrier mobility of ~1 square centimeter per volt per second, high stretchability, and good biocompatibility. Further fabrication of a fully bioadhesive transistor sensor enabled us to produce high-quality and stable electrophysiological recordings on an isolated rat heart and in vivo rat muscles.
生物电子器件的应用依赖于与软组织的直接接触。对于晶体管型生物电子器件,需要与生物组织进行有效信号转导的半导体与湿组织的黏附性不佳,从而限制了界面的稳定性和顺应性。我们通过生物黏附性刷状聚合物和氧化还原活性半导体聚合物形成的双重网络结构,报道了一种生物黏附性聚合物半导体。所得到的半导体薄膜可以与湿组织表面快速且牢固地黏附,同时具有~1 平方厘米每伏特每秒的高电荷载流子迁移率、高拉伸性和良好的生物相容性。进一步制造完全生物黏附晶体管传感器,使我们能够在分离的大鼠心脏和体内大鼠肌肉上产生高质量和稳定的电生理记录。