文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

利用前沿的CAPCBAM深度学习框架革新阿尔茨海默病检测。

Revolutionizing Alzheimer's disease detection with a cutting-edge CAPCBAM deep learning framework.

作者信息

Slimi Houmem, Abid Sabeur, Sayadi Mounir

机构信息

University Of Tunis, ENSIT, Labo SIME, 1008, Tunis, Tunisia.

出版信息

Sci Rep. 2025 Apr 22;15(1):13925. doi: 10.1038/s41598-025-98476-0.


DOI:10.1038/s41598-025-98476-0
PMID:40263406
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12015271/
Abstract

Early and accurate diagnosis of Alzheimer's disease (AD) is crucial for effective treatment. While the integration of deep learning techniques for AD classification is not entirely new, this study introduces CAPCBAM-a framework that extends prior approaches by combining Capsule Networks with a Convolutional Block Attention Module (CBAM). In CAPCBAM, standardized preprocessing of MRI images is followed by feature extraction using Capsule Networks, which preserve spatial hierarchies and capture intricate relationships among image features. The subsequent application of CBAM, employing both channel and spatial attention mechanisms, refines the feature maps to highlight the most clinically relevant regions. This dual-attention strategy offers clear advantages over conventional CNN methods, particularly in enhancing model generalization and mitigating information loss due to pooling. On the ADNI dataset, CAPCBAM achieved an impressive accuracy of 99.95%, with precision and recall both at 99.8%, an AUC of 0.99, and an F1-Score of 99.92%. Although the use of Capsule Networks and attention mechanisms has been explored previously, CAPCBAM distinguishes itself by its robust integration of these components. The study's advantages include improved feature extraction, faster convergence, and superior classification performance, making it a promising tool for the early detection of Alzheimer's disease.

摘要

阿尔茨海默病(AD)的早期准确诊断对于有效治疗至关重要。虽然将深度学习技术用于AD分类并非全新的方法,但本研究引入了CAPCBAM——一个通过将胶囊网络与卷积块注意力模块(CBAM)相结合来扩展先前方法的框架。在CAPCBAM中,对MRI图像进行标准化预处理,然后使用胶囊网络进行特征提取,胶囊网络保留空间层次结构并捕捉图像特征之间的复杂关系。随后应用CBAM,采用通道和空间注意力机制,对特征图进行细化,以突出最具临床相关性的区域。这种双重注意力策略相对于传统的卷积神经网络(CNN)方法具有明显优势,特别是在增强模型泛化能力和减轻池化导致的信息损失方面。在阿尔茨海默病神经成像计划(ADNI)数据集上,CAPCBAM取得了令人印象深刻的准确率,达到99.95%,精确率和召回率均为99.8%,曲线下面积(AUC)为0.99,F1分数为99.92%。虽然之前已经探索过使用胶囊网络和注意力机制,但CAPCBAM通过对这些组件的强大整合而脱颖而出。该研究的优势包括改进的特征提取、更快的收敛速度和卓越的分类性能,使其成为阿尔茨海默病早期检测的一个有前途的工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3619/12015271/335a88d554ee/41598_2025_98476_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3619/12015271/79263cbc7f8a/41598_2025_98476_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3619/12015271/4ecec18896c3/41598_2025_98476_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3619/12015271/389df8d5fe28/41598_2025_98476_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3619/12015271/3f06623e4ac4/41598_2025_98476_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3619/12015271/935afd1122eb/41598_2025_98476_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3619/12015271/51bcd3871047/41598_2025_98476_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3619/12015271/9e6ebc773ae3/41598_2025_98476_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3619/12015271/630c58554595/41598_2025_98476_Fig8a_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3619/12015271/335a88d554ee/41598_2025_98476_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3619/12015271/79263cbc7f8a/41598_2025_98476_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3619/12015271/4ecec18896c3/41598_2025_98476_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3619/12015271/389df8d5fe28/41598_2025_98476_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3619/12015271/3f06623e4ac4/41598_2025_98476_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3619/12015271/935afd1122eb/41598_2025_98476_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3619/12015271/51bcd3871047/41598_2025_98476_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3619/12015271/9e6ebc773ae3/41598_2025_98476_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3619/12015271/630c58554595/41598_2025_98476_Fig8a_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3619/12015271/335a88d554ee/41598_2025_98476_Fig9_HTML.jpg

相似文献

[1]
Revolutionizing Alzheimer's disease detection with a cutting-edge CAPCBAM deep learning framework.

Sci Rep. 2025-4-22

[2]
Brain tumor segmentation and detection in MRI using convolutional neural networks and VGG16.

Cancer Biomark. 2025-3

[3]
An Early Detection and Classification of Alzheimer's Disease Framework Based on ResNet-50.

Curr Med Imaging. 2024

[4]
3-1-3 Weight averaging technique-based performance evaluation of deep neural networks for Alzheimer's disease detection using structural MRI.

Biomed Phys Eng Express. 2024-9-24

[5]
MCNEL: A multi-scale convolutional network and ensemble learning for Alzheimer's disease diagnosis.

Comput Methods Programs Biomed. 2025-6

[6]
Classifying Alzheimer's Disease Using a Finite Basis Physics Neural Network.

Microsc Res Tech. 2025-4

[7]
A parameter-efficient deep learning approach to predict conversion from mild cognitive impairment to Alzheimer's disease.

Neuroimage. 2019-1-14

[8]
Towards Explainable Detection of Alzheimer's Disease: A Fusion of Deep Convolutional Neural Network and Enhanced Weighted Fuzzy C-Mean.

Curr Med Imaging. 2024

[9]
A Deep Learning Approach for Automated Diagnosis and Multi-Class Classification of Alzheimer's Disease Stages Using Resting-State fMRI and Residual Neural Networks.

J Med Syst. 2019-12-18

[10]
Structure focused neurodegeneration convolutional neural network for modelling and classification of Alzheimer's disease.

Sci Rep. 2024-7-3

本文引用的文献

[1]
Alzheimer's disease image classification based on enhanced residual attention network.

PLoS One. 2025-1-27

[2]
A Multi-Label Deep Learning Model for Detailed Classification of Alzheimer's Disease.

Actas Esp Psiquiatr. 2025-1

[3]
A combinatorial deep learning method for Alzheimer's disease classification-based merging pretrained networks.

Front Comput Neurosci. 2024-10-17

[4]
Dominating Alzheimer's disease diagnosis with deep learning on sMRI and DTI-MD.

Front Neurol. 2024-8-15

[5]
Classification of Alzheimer's disease: application of a transfer learning deep Q-network method.

Eur J Neurosci. 2024-4

[6]
An effective Alzheimer's disease segmentation and classification using Deep ResUnet and Efficientnet.

J Biomol Struct Dyn. 2025-4

[7]
A Deep Learning-Based Ensemble Method for Early Diagnosis of Alzheimer's Disease using MRI Images.

Neuroinformatics. 2024-1

[8]
Conv-Swinformer: Integration of CNN and shift window attention for Alzheimer's disease classification.

Comput Biol Med. 2023-9

[9]
Three-round learning strategy based on 3D deep convolutional GANs for Alzheimer's disease staging.

Sci Rep. 2023-4-7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索