Slimi Houmem, Abid Sabeur, Sayadi Mounir
University Of Tunis, ENSIT, Labo SIME, 1008, Tunis, Tunisia.
Sci Rep. 2025 Apr 22;15(1):13925. doi: 10.1038/s41598-025-98476-0.
Early and accurate diagnosis of Alzheimer's disease (AD) is crucial for effective treatment. While the integration of deep learning techniques for AD classification is not entirely new, this study introduces CAPCBAM-a framework that extends prior approaches by combining Capsule Networks with a Convolutional Block Attention Module (CBAM). In CAPCBAM, standardized preprocessing of MRI images is followed by feature extraction using Capsule Networks, which preserve spatial hierarchies and capture intricate relationships among image features. The subsequent application of CBAM, employing both channel and spatial attention mechanisms, refines the feature maps to highlight the most clinically relevant regions. This dual-attention strategy offers clear advantages over conventional CNN methods, particularly in enhancing model generalization and mitigating information loss due to pooling. On the ADNI dataset, CAPCBAM achieved an impressive accuracy of 99.95%, with precision and recall both at 99.8%, an AUC of 0.99, and an F1-Score of 99.92%. Although the use of Capsule Networks and attention mechanisms has been explored previously, CAPCBAM distinguishes itself by its robust integration of these components. The study's advantages include improved feature extraction, faster convergence, and superior classification performance, making it a promising tool for the early detection of Alzheimer's disease.
阿尔茨海默病(AD)的早期准确诊断对于有效治疗至关重要。虽然将深度学习技术用于AD分类并非全新的方法,但本研究引入了CAPCBAM——一个通过将胶囊网络与卷积块注意力模块(CBAM)相结合来扩展先前方法的框架。在CAPCBAM中,对MRI图像进行标准化预处理,然后使用胶囊网络进行特征提取,胶囊网络保留空间层次结构并捕捉图像特征之间的复杂关系。随后应用CBAM,采用通道和空间注意力机制,对特征图进行细化,以突出最具临床相关性的区域。这种双重注意力策略相对于传统的卷积神经网络(CNN)方法具有明显优势,特别是在增强模型泛化能力和减轻池化导致的信息损失方面。在阿尔茨海默病神经成像计划(ADNI)数据集上,CAPCBAM取得了令人印象深刻的准确率,达到99.95%,精确率和召回率均为99.8%,曲线下面积(AUC)为0.99,F1分数为99.92%。虽然之前已经探索过使用胶囊网络和注意力机制,但CAPCBAM通过对这些组件的强大整合而脱颖而出。该研究的优势包括改进的特征提取、更快的收敛速度和卓越的分类性能,使其成为阿尔茨海默病早期检测的一个有前途的工具。
Comput Methods Programs Biomed. 2025-6
Microsc Res Tech. 2025-4
Actas Esp Psiquiatr. 2025-1
Front Comput Neurosci. 2024-10-17
Front Neurol. 2024-8-15
J Biomol Struct Dyn. 2025-4