Luo Zixiang, Peng Kaining, Liang Zhichao, Cai Shengyuan, Xu Chenyu, Li Dan, Hu Yu, Zhou Changsong, Liu Quanying
Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China.
Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China.
Nat Methods. 2025 Apr 22. doi: 10.1038/s41592-025-02654-x.
Effective connectivity (EC), which reflects the causal interactions between brain regions, is fundamental to understanding information processing in the brain; however, traditional methods for obtaining EC, which rely on neural responses to stimulation, are often invasive or limited in spatial coverage, making them unsuitable for whole-brain EC mapping in humans. Here, to address this gap, we introduce Neural Perturbational Inference (NPI), a data-driven framework for mapping whole-brain EC. NPI employs an artificial neural network trained to model large-scale neural dynamics, serving as a computational surrogate of the brain. By systematically perturbing all regions in the surrogate brain and analyzing the resulting responses in other regions, NPI maps the directionality, strength and excitatory/inhibitory properties of brain-wide EC. Validation of NPI on generative models with known ground-truth EC demonstrates its superiority over existing methods such as Granger causality and dynamic causal modeling. When applied to resting-state functional magnetic resonance imaging data across diverse datasets, NPI reveals consistent, structurally supported EC patterns. Furthermore, comparisons with cortico-cortical evoked potential data show a strong resemblance between NPI-inferred EC and real stimulation propagation patterns. By transitioning from correlational to causal understandings of brain functionality, NPI marks a stride in decoding the brain's functional architecture and facilitating both neuroscience studies and clinical applications.
有效连接性(EC)反映了脑区之间的因果相互作用,是理解大脑信息处理的基础;然而,传统的获取有效连接性的方法依赖于对刺激的神经反应,往往具有侵入性或空间覆盖范围有限,使其不适合用于人类全脑有效连接性图谱绘制。在此,为了填补这一空白,我们引入了神经扰动推理(NPI),这是一种用于绘制全脑有效连接性的数据驱动框架。NPI采用经过训练以模拟大规模神经动力学的人工神经网络,作为大脑的计算替代物。通过系统地扰动替代大脑中的所有区域并分析其他区域产生的反应,NPI绘制出全脑有效连接性的方向性、强度和兴奋/抑制特性。在具有已知真实有效连接性的生成模型上对NPI进行验证,证明了它相对于格兰杰因果关系和动态因果建模等现有方法的优越性。当应用于跨不同数据集的静息态功能磁共振成像数据时,NPI揭示了一致的、有结构支持的有效连接性模式。此外,与皮质-皮质诱发电位数据的比较表明,NPI推断的有效连接性与实际刺激传播模式之间有很强的相似性。通过从对大脑功能的相关性理解转变为因果性理解,NPI在解码大脑功能结构以及促进神经科学研究和临床应用方面迈出了一大步。