Suppr超能文献

颈椎全椎间盘置换术轴承几何形状的优化。

Optimization of a bearing geometry for a cervical total disc replacement.

作者信息

Kölle Lucia, Flohr Markus, Pryce Gregory, Beadling Andrew R, Bryant Michael, Hall Richard M, Ferguson Stephen J, Helgason Benedikt

机构信息

Institute for Biomechanics, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland.

Medical Products Division, CeramTec GmbH, Plochingen, Germany.

出版信息

Front Bioeng Biotechnol. 2025 Apr 8;13:1469366. doi: 10.3389/fbioe.2025.1469366. eCollection 2025.

Abstract

INTRODUCTION

While Total Disc Replacements (TDRs) are generally performing well clinically, reoperation rates indicate that the full potential of the TDR concept might not have been reached. Inspired by the underlying complications related to biomechanics and material longevity that limit the performance of current TDRs, we propose a methodology for the development of TDR-bearings, that addresses such issues.

METHODS

Our methodology combines finite element model-based optimization with literature derived biomechanical data and an advanced ceramic material to design TDR-bearings. The design optimization aims to functionally replace the structures that are commonly excised (removed) or dissected (cut) during TDR implantation in the anterior column.

RESULTS

The optimized bearing geometry was able to replicate the moment-rotation curve of the anterior column of the natural C6/C7 level during coupled flexion/extension-anterior/posterior translation movement. Lateral bending and axial rotation were simulated to ensure the TDR would not fail during these load- and motion profiles. Experimental verification of the finite element model showed the suitability of our simulation approach.

DISCUSSION

The combination of computational techniques, advanced materials, and target biomechanical data may allow to overcome limitations of current TDRs and unlock the full potential of the TDR-concept.

摘要

引言

虽然全椎间盘置换术(TDR)在临床上总体表现良好,但再次手术率表明TDR概念的全部潜力可能尚未实现。受与生物力学和材料寿命相关的潜在并发症的启发,这些并发症限制了当前TDR的性能,我们提出了一种开发TDR轴承的方法,以解决此类问题。

方法

我们的方法将基于有限元模型的优化与文献得出的生物力学数据以及一种先进的陶瓷材料相结合,以设计TDR轴承。设计优化旨在功能性地替代在TDR植入前柱过程中通常被切除或切开的结构。

结果

优化后的轴承几何形状能够在耦合屈伸-前后平移运动期间复制自然C6/C7节段前柱的力矩-旋转曲线。模拟了侧弯和轴向旋转,以确保TDR在这些载荷和运动情况下不会失效。有限元模型的实验验证表明了我们模拟方法的适用性。

讨论

计算技术、先进材料和目标生物力学数据的结合可能有助于克服当前TDR的局限性,并释放TDR概念的全部潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fca7/12011838/478636f147ff/fbioe-13-1469366-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验