Suppr超能文献

使用深度学习生成的CBCT轮廓进行前列腺立体定向消融放疗(SABR)治疗的在线剂量评估。

Using deep learning generated CBCT contours for online dose assessment of prostate SABR treatments.

作者信息

Smith Conor Sinclair, Gagne Isabelle, Otto Karl, Kolbeck Carter, Giambattista Joshua, Alexander Abraham, Murchison Sonja, Pritchard Andrew, Chin Erika

机构信息

Department of Physics and Astronomy, University of Victoria, Victoria, British Columbia, Canada.

Department of Medical Physics, BC Cancer Victoria, Victoria, British Columbia, Canada.

出版信息

J Appl Clin Med Phys. 2025 Jun;26(6):e70098. doi: 10.1002/acm2.70098. Epub 2025 Apr 23.

Abstract

Prostate Stereotactic Ablative Body Radiotherapy (SABR) is an ultra-hypofractionated treatment where small setup errors can lead to higher doses to organs at risk (OARs). Although bowel and bladder preparation protocols reduce inter-fraction variability, inconsistent patient adherence still results in OAR variability. At many centers without online adaptive machines, radiation therapists use decision trees (DTs) to visually assess patient setup, yet their application varies. To evaluate our center's DTs, we employed deep learning-generated cone-beam computed tomography (CBCT) contours to estimate daily doses to the rectum and bladder, comparing these with planned dose-volume metrics to guide future personalized DT development. Two hundred pretreatment CBCT scans from 40 prostate SABR patients (each receiving 40 Gy in five fractions) were auto-contoured retrospectively, and daily rectum and bladder doses were estimated by overlaying the planned dose on the CBCT using online rigid registration data. Dose-volume metrics were classified as "no", "minor", or "major" violations based on meeting preferred or mandatory goals. Twenty-seven percent of fractions exhibited at least one major bladder violation (with an additional 34% minor), while 14% of fractions had a major rectum violation (10% minor). Across treatments, five patients had recurring bladder V37 Gy major violations and two had rectum V36 Gy major violations. Bowel and bladder preparation significantly influenced OAR position and volume, leading to unmet mandatory goals. Our retrospective analysis underscores the significant impact of patient preparation on dosimetric outcomes. Our findings highlight that DTs based solely on visual assessment miss dose metric violations due to human error; only 23 of 59 under-filled bladder fractions were flagged. In addition to the insensitivity of visual assessments, variability in DT application further compromises patient setup evaluation. These analyses confirm that reliance on visual inspection alone can overlook deviations, emphasizing the need for automated tools to ensure adherence to dosimetric constraints in prostate SABR.

摘要

前列腺立体定向消融体部放射治疗(SABR)是一种超分割治疗,微小的摆位误差可能导致危及器官(OARs)接受更高剂量。尽管肠道和膀胱准备方案可减少分次间的变异性,但患者依从性不一致仍会导致OARs的变异性。在许多没有在线自适应机器的中心,放射治疗师使用决策树(DTs)来直观评估患者摆位,但其应用存在差异。为了评估我们中心的DTs,我们采用深度学习生成的锥束计算机断层扫描(CBCT)轮廓来估计直肠和膀胱的每日剂量,并将这些剂量与计划的剂量体积指标进行比较,以指导未来个性化DT的开发。回顾性自动勾勒了40例前列腺SABR患者(每人分5次接受40 Gy)的200次治疗前CBCT扫描,并使用在线刚性配准数据将计划剂量叠加在CBCT上,估计直肠和膀胱的每日剂量。根据是否达到优选或强制目标,将剂量体积指标分为“无”、“轻微”或“严重”违规。27%的分次至少出现一次膀胱严重违规(另有34%为轻微违规),而14%的分次出现直肠严重违规(10%为轻微违规)。在所有治疗中,5例患者反复出现膀胱V37 Gy严重违规,2例患者出现直肠V36 Gy严重违规。肠道和膀胱准备对OARs的位置和体积有显著影响,导致未达到强制目标。我们的回顾性分析强调了患者准备对剂量学结果的重大影响。我们的研究结果表明,仅基于视觉评估的DTs会因人为误差而遗漏剂量指标违规情况;59例膀胱未充满分次中只有23例被标记。除了视觉评估的不敏感性外,DT应用的变异性进一步影响了患者摆位评估。这些分析证实,仅依靠视觉检查可能会忽略偏差,强调需要自动化工具来确保在前列腺SABR中遵守剂量学限制。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验