Suppr超能文献

孟加拉国煤矿区土壤中重金属准确预测的机器学习模型评估

Evaluation of machine learning models for accurate prediction of heavy metals in coal mining region soils in Bangladesh.

作者信息

Proshad Ram, Chandra Krishno, Islam Maksudul, Khurram Dil, Rahim Md Abdur, Asif Maksudur Rahman, Idris Abubakr M

机构信息

State Key Laboratory of Mountain Hazards and Engineering Safety, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041, Sichuan, China.

University of Chinese Academy of Sciences, Beijing, 100049, China.

出版信息

Environ Geochem Health. 2025 Apr 23;47(5):181. doi: 10.1007/s10653-025-02489-7.

Abstract

Coal mining soils are highly susceptible to heavy metal pollution due to the discharge of mine tailings, overburden dumps, and acid mine drainage. Developing a reliable predictive model for heavy metal concentrations in this region has proven to be a significant challenge. This study employed machine learning (ML) techniques to model heavy metal pollution in soils within this critical ecosystem. A total of 91 standardized soil samples were analyzed to predict the accumulation of eight heavy metals using four distinct ML algorithms. Among them, random forest model outer performed in predicting As (0.79), Cd (0.89), Cr (0.63), Ni (0.56), Cu (0.60), and Zn (0.52), achieving notable R squared values. The feature attribute analysis identified As-K, Pb-K, Cd-S, Zn-FeO, Cr- FeO, Ni-AlO, Cu-P, and Mn- FeO relationships resembled with correlation coefficients among them. The developed models revealed that the contamination factor for metals in soils indicated extremely high levels of Pb contamination (CF ≥ 6). In conclusion, this research offers a robust framework for predicting heavy metal pollution in coal mining soils, highlighting critical areas that require immediate conservation efforts. These findings emphasize the necessity for targeted environmental management and mitigation to reduce heavy metal pollution in mining sites.

摘要

由于尾矿排放、排土场和酸性矿山排水,煤矿土壤极易受到重金属污染。事实证明,为该地区的重金属浓度建立一个可靠的预测模型是一项重大挑战。本研究采用机器学习(ML)技术对这个关键生态系统中的土壤重金属污染进行建模。共分析了91个标准化土壤样本,使用四种不同的ML算法预测八种重金属的积累情况。其中,随机森林模型在预测砷(0.79)、镉(0.89)、铬(0.63)、镍(0.56)、铜(0.60)和锌(0.52)方面表现出色,获得了显著的决定系数值。特征属性分析确定了砷与钾、铅与钾、镉与硫、锌与氧化亚铁、铬与氧化亚铁、镍与氧化铝、铜与磷以及锰与氧化亚铁之间的关系,它们之间的相关系数相似。所开发的模型表明,土壤中金属的污染因子表明铅污染程度极高(CF≥6)。总之,本研究为预测煤矿土壤中的重金属污染提供了一个强大的框架,突出了需要立即进行保护的关键区域。这些发现强调了有针对性的环境管理和缓解措施对于减少矿区重金属污染的必要性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验