Tu Jie, Li Hangren, Liu Xudong, Xi Guoqiang, Liu Xiuqiao, Zhang Mengqi, Wu Rong, Du Siyuan, Lu Dongfei, Shi Longyuan, Xia Jing, Fang Yue-Wen, Ding Jiaqi, Liu Yuzhuo, Jia Yueyang, Yuan Meng, Yang Rui, Li Xiaolong, Meng Xiangmin, Tian Jianjun, Zhang Linxing, Xing Xianran
Institute for Advanced Materials Technology, University of Science and Technology Beijing, Beijing 100083, China.
Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry Chinese Academy of Sciences, Beijing 100190, China.
Sci Adv. 2025 Apr 25;11(17):eads4925. doi: 10.1126/sciadv.ads4925. Epub 2025 Apr 23.
Double-perovskite films have been extensively studied in multifunctional fields due to their modifiability. Here, a controlled process strategy to induce chemical strain and anomalous Poisson deformation is proposed for perovskite-based films. The chemical negative strain in the local-ordering BiSmFeO double-perovskite films can be regulated by oxygen engineering to cause the effectively tunable bandgap. We markedly increased the switchable open-circuit voltage to ~1.56 V from ~0.50 V for Pt/BiSmFeO/Nb-SrTiO devices, which is the highest in single-layer perovskite-based ferroelectric photovoltaic perpendicular devices under white light-emitting diode irradiation. The multifield composite action mechanism reveals the electrical cause of the large open-circuit voltage. The synergy of the optical fields and ferroelectric fields provides the possibility of multilevel storage. Structural characterizations indicate that the chemical strain offers a dual role of lattice distortion and vacancy migration. The strategy of controllable chemical strain facilitates further exploration of the application potential of ferroelectric materials for multifunctional electronic devices.
由于其可改性,双钙钛矿薄膜在多功能领域得到了广泛研究。在此,针对钙钛矿基薄膜提出了一种诱导化学应变和反常泊松变形的可控工艺策略。局部有序的BiSmFeO双钙钛矿薄膜中的化学负应变可通过氧工程进行调节,以实现有效可调的带隙。对于Pt/BiSmFeO/Nb-SrTiO器件,我们将可切换的开路电压从约0.50 V显著提高到约1.56 V,这是白光发光二极管照射下单层钙钛矿基铁电光伏垂直器件中的最高值。多场复合作用机制揭示了大开路电压的电学原因。光场和铁电场的协同作用提供了多级存储的可能性。结构表征表明,化学应变起到了晶格畸变和空位迁移的双重作用。可控化学应变策略有助于进一步探索铁电材料在多功能电子器件中的应用潜力。