Suppr超能文献

人工智能辅助病变检测对多参数前列腺MRI中放射科医生解读的影响

Impact of artificial intelligence assisted lesion detection on radiologists' interpretation at multiparametric prostate MRI.

作者信息

Nakrour Nabih, Cochran Rory L, Mercaldo Nathaniel David, Bradley William, Tsai Leo L, Prajapati Priyanka, Grimm Robert, von Busch Heinrich, Lo Wei-Ching, Harisinghani Mukesh G

机构信息

Massachusetts General Hospital, Boston, MA, USA.

Massachusetts General Hospital, Boston, MA, USA.

出版信息

Clin Imaging. 2025 Jun;122:110484. doi: 10.1016/j.clinimag.2025.110484. Epub 2025 Apr 15.

Abstract

PURPOSE

To compare prostate cancer lesion detection using conventional and artificial intelligence (AI)-assisted image interpretation at multiparametric MRI (mpMRI).

MATERIALS AND METHODS

A retrospective study of 53 consecutive patients who underwent prostate mpMRI and subsequent prostate tissue sampling was performed. Two board-certified radiologists (with 4 and 12 years of experience) blinded to the clinical information interpreted anonymized exams using the PI-RADS v2.1 framework without and with an AI-assistance tool. The AI software tool provided radiologists with gland segmentation and automated lesion detection assigning a probability score for the likelihood of the presence of clinically significant prostate cancer (csPCa). The reference standard for all cases was the prostate pathology from systematic and targeted biopsies. Statistical analyses assessed interrater agreement and compared diagnostic performances with and without AI assistance.

RESULTS

Within the entire cohort, 42 patients (79 %) harbored Gleason-positive disease, with 25 patients (47 %) having csPCa. Radiologists' diagnostic performance for csPCa was significantly improved over conventional interpretation with AI assistance (reader A: AUC 0.82 vs. 0.72, p = 0.03; reader B: AUC 0.78 vs. 0.69, p = 0.03). Without AI assistance, 81 % (n = 36; 95 % CI: 0.89-0.91) of the lesions were scored similarly by radiologists for lesion-level characteristics, and with AI assistance, 59 % (26, 0.82-0.89) of the lesions were scored similarly. For reader A, there was a significant difference in PI-RADS scores (p = 0.02) between AI-assisted and non-assisted assessments. Signficant differences were not detected for reader B.

CONCLUSION

AI-assisted prostate mMRI interpretation improved radiologist diagnostic performance over conventional interpretation independent of reader experience.

摘要

目的

比较在多参数磁共振成像(mpMRI)中使用传统方法和人工智能(AI)辅助图像解读来检测前列腺癌病变的情况。

材料与方法

对53例连续接受前列腺mpMRI检查及后续前列腺组织采样的患者进行回顾性研究。两名获得委员会认证的放射科医生(分别有4年和12年经验)在不了解临床信息的情况下,使用PI-RADS v2.1框架对匿名检查进行解读,一次不使用AI辅助工具,另一次使用AI辅助工具。AI软件工具为放射科医生提供腺体分割和自动病变检测,并为临床显著前列腺癌(csPCa)的存在可能性分配概率评分。所有病例的参考标准是系统和靶向活检的前列腺病理结果。统计分析评估了阅片者间的一致性,并比较了有无AI辅助时的诊断性能。

结果

在整个队列中,42例患者(79%)患有Gleason阳性疾病,其中25例患者(47%)患有csPCa。在AI辅助下,放射科医生对csPCa的诊断性能比传统解读有显著提高(阅片者A:AUC为0.82对0.72,p = 0.03;阅片者B:AUC为0.78对0.69,p = 0.03)。在没有AI辅助的情况下,81%(n = 36;95% CI:0.89 - 0.91)的病变在病变水平特征方面被放射科医生给出相似评分,在有AI辅助的情况下,59%(26,0.82 - 0.89)的病变被给出相似评分。对于阅片者A,AI辅助评估和非辅助评估之间的PI-RADS评分存在显著差异(p = 0.02)。阅片者B未检测到显著差异。

结论

与传统解读相比,AI辅助的前列腺mpMRI解读提高了放射科医生的诊断性能,且与阅片者经验无关。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验