Suppr超能文献

多模态方法优化多参数MRI上PI-RADS 3类病变的活检决策

Multimodal approach to optimize biopsy decision-making for PI-RADS 3 lesions on multiparametric MRI.

作者信息

Esengur Omer Tarik, Yilmaz Enis C, Ozyoruk Kutsev B, Chen Alex, Lay Nathan S, Gelikman David G, Merino Maria J, Gurram Sandeep, Wood Bradford J, Choyke Peter L, Harmon Stephanie A, Pinto Peter A, Turkbey Baris

机构信息

Molecular Imaging Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.

Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.

出版信息

Clin Imaging. 2025 Jan;117:110363. doi: 10.1016/j.clinimag.2024.110363. Epub 2024 Nov 19.

Abstract

PURPOSE

To develop and evaluate a multimodal approach including clinical parameters and biparametric MRI-based artificial intelligence (AI) model for determining the necessity of prostate biopsy in patients with PI-RADS 3 lesions.

METHODS

This retrospective study included a prospectively recruited patient cohort with PI-RADS 3 lesions who underwent prostate MRI and MRI/US fusion-guided biopsy between April 2019 and February 2024 in a single institution. The study examined demographic data, PSA and PSA density (PSAD) levels, prostate volumes, prospective PI-RADS v2.1-compliant interpretations of a genitourinary radiologist, lesion characteristics, history of prior biopsies, and AI evaluations, focusing mainly on the detection of clinically significant prostate cancer (csPCa) (International Society of Urological Pathology grade group ≥2) on MRI/US fusion-guided biopsy. The AI model lesion segmentations were compared to manual segmentations and biopsy results. The statistical methods employed included Fisher's exact test and logistic regression.

RESULTS

The cohort was comprised of 248 patients with 312 PI-RADS 3 lesions in total (n = 268 non-csPCa, n = 44 csPCa). The AI model's negative predictive value (NPV) was 89.2 % for csPCa in all lesions. In patient-level analysis, the NPV was 91.2 % for patients with a highest PI-RADS score of 3. PSAD was a significant predictor of csPCa (odds ratio = 5.8, p = 0.038). Combining AI and PSAD, where AI correctly mapped a lesion or PSAD ≥0.15 ng/mL, achieved higher sensitivity (77.8 %) while maintaining a high NPV (93.1 %).

CONCLUSION

Combining AI and PSAD has the potential to enhance biopsy decision-making for PI-RADS 3 lesions by minimizing missed csPCa occurrences and reducing unnecessary biopsies.

摘要

目的

开发并评估一种多模式方法,该方法包括临床参数和基于双参数MRI的人工智能(AI)模型,用于确定PI-RADS 3类病变患者进行前列腺活检的必要性。

方法

这项回顾性研究纳入了一个前瞻性招募的患者队列,这些患者患有PI-RADS 3类病变,于2019年4月至2024年2月在单一机构接受了前列腺MRI检查以及MRI/超声融合引导下的活检。该研究检查了人口统计学数据、PSA和PSA密度(PSAD)水平、前列腺体积、泌尿生殖放射科医生符合PI-RADS v2.1标准的前瞻性解读、病变特征、既往活检史以及AI评估,主要关注在MRI/超声融合引导下的活检中检测临床显著前列腺癌(csPCa)(国际泌尿病理学会分级组≥2)。将AI模型的病变分割与手动分割及活检结果进行比较。采用的统计方法包括Fisher精确检验和逻辑回归。

结果

该队列共有248例患者,总计312个PI-RADS 3类病变(n = 268例非csPCa,n = 44例csPCa)。AI模型对所有病变中csPCa的阴性预测值(NPV)为89.2%。在患者层面分析中,PI-RADS最高评分为3分的患者NPV为91.2%。PSAD是csPCa的显著预测因子(比值比 = 5.8,p = 0.038)。将AI与PSAD相结合,即AI正确标记病变或PSAD≥0.15 ng/mL时,可实现更高的灵敏度(77.8%),同时保持较高的NPV(93.1%)。

结论

结合AI和PSAD有可能通过最大限度减少漏诊csPCa的发生并减少不必要的活检,来改善PI-RADS 3类病变的活检决策。

相似文献

本文引用的文献

9
Cancer statistics, 2024.2024年癌症统计数据。
CA Cancer J Clin. 2024 Jan-Feb;74(1):12-49. doi: 10.3322/caac.21820. Epub 2024 Jan 17.
10
Artificial intelligence applications in prostate cancer.人工智能在前列腺癌中的应用。
Prostate Cancer Prostatic Dis. 2024 Mar;27(1):37-45. doi: 10.1038/s41391-023-00684-0. Epub 2023 Jun 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验