Suppr超能文献

灰鲸颅骨振动在骨质听觉复合体中放大的实验观察

Experimental observation of gray whale skull vibrations amplified in the bony hearing complex.

作者信息

Morris Margaret A, Krysl Petr, Hildebrand John A, Cranford Ted W

机构信息

Scripps Institution of Oceanography, University of California, San Diego, 9500 Gilman Drive MC:0205, La Jolla, CA, 92093-0205, USA.

Department of Structural Engineering, University of California, San Diego, 9500 Gilman Drive MC:0085, La Jolla, CA, 92093-0085, USA.

出版信息

Sci Rep. 2025 Apr 23;15(1):14075. doi: 10.1038/s41598-025-98100-1.

Abstract

Mysticete whales have bilateral bony ear complexes (tympanoperiotic complexes) that amplify low frequency vibrations in proximity to their vocalization ranges. Understanding the functional mechanics would enable precise predictions of mysticete hearing sensitivity, which is currently unknown. We conducted experiments on a juvenile and an adult gray whale skull from deceased animals to measure the vibrational dynamics between the tympanic bullae and the skull. Relative motions between bullae and skull indicate sound transfer to the inner ear. For the juvenile, assessments were performed on (1) a 3D-printed plastic skull-replica, (2) the original skull after much of the soft tissue had been removed by dissection, and (3) the denuded skull after hydrogen peroxide was used to erode the remaining soft tissues. We excited vibrations in the juvenile skull underwater by projecting sound in a test pool, ranging from 170-1000 Hz. Additionally, we measured in-air vibrations of the plastic, denuded, and adult skulls using a mechanical shaker to drive vibrations anteroposteriorly (rostrum-to-tail) from 150-1000 Hz. The results consistently showed amplification of vibrations at the tympanic bullae compared to the base of the skull, demonstrating a mechanism by which low-frequency sound is transferred from the environment, through the skull, to the inner ear.

摘要

须鲸拥有双侧骨质耳复合体(鼓室-耳骨复合体),可在其发声范围内放大低频振动。了解其功能机制将有助于精确预测须鲸目前未知的听力敏感度。我们对两只已死亡动物的幼年和成年灰鲸头骨进行了实验,以测量鼓泡与头骨之间的振动动态。鼓泡与头骨之间的相对运动表明声音向内耳的传递。对于幼年灰鲸头骨,我们进行了以下评估:(1)一个3D打印的塑料头骨复制品;(2)在解剖去除大部分软组织后的原始头骨;(3)用过氧化氢腐蚀掉剩余软组织后的裸露头骨。我们在测试池中通过投射170 - 1000赫兹的声音来激发幼年灰鲸头骨在水下的振动。此外,我们使用机械振动台对塑料、裸露和成年灰鲸头骨进行了空气中的振动测量,振动频率范围为150 - 1000赫兹,从前到后(从吻部到尾部)驱动振动。结果一致表明,与头骨基部相比,鼓泡处的振动得到了放大,这证明了低频声音从环境通过头骨向内耳传递的一种机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2d52/12019329/e0cc9bcb8b10/41598_2025_98100_Fig1_HTML.jpg

相似文献

1
Experimental observation of gray whale skull vibrations amplified in the bony hearing complex.
Sci Rep. 2025 Apr 23;15(1):14075. doi: 10.1038/s41598-025-98100-1.
2
Fin whale sound reception mechanisms: skull vibration enables low-frequency hearing.
PLoS One. 2015 Jan 29;10(1):e0116222. doi: 10.1371/journal.pone.0116222. eCollection 2015.
3
Sound transmission in archaic and modern whales: anatomical adaptations for underwater hearing.
Anat Rec (Hoboken). 2007 Jun;290(6):716-33. doi: 10.1002/ar.20528.
4
A new acoustic portal into the odontocete ear and vibrational analysis of the tympanoperiotic complex.
PLoS One. 2010 Aug 4;5(8):e11927. doi: 10.1371/journal.pone.0011927.
6
Specialization for underwater hearing by the tympanic middle ear of the turtle, Trachemys scripta elegans.
Proc Biol Sci. 2012 Jul 22;279(1739):2816-24. doi: 10.1098/rspb.2012.0290. Epub 2012 Mar 21.
7
Resonance of the tympanoperiotic complex of fin whales with implications for their low frequency hearing.
PLoS One. 2023 Oct 11;18(10):e0288119. doi: 10.1371/journal.pone.0288119. eCollection 2023.
8
Cranial asymmetry in Eocene archaeocete whales and the evolution of directional hearing in water.
Proc Natl Acad Sci U S A. 2011 Aug 30;108(35):14545-8. doi: 10.1073/pnas.1108927108. Epub 2011 Aug 22.
9
Biophysics of underwater hearing in the clawed frog, Xenopus laevis.
J Comp Physiol A. 1995 Mar;176(3):317-24. doi: 10.1007/BF00219057.
10
Comparative morphology and evolution of the otic region in toothed whales (Cetacea, Mammalia).
Am J Anat. 1986 Nov;177(3):353-68. doi: 10.1002/aja.1001770306.

本文引用的文献

1
Resonance of the tympanoperiotic complex of fin whales with implications for their low frequency hearing.
PLoS One. 2023 Oct 11;18(10):e0288119. doi: 10.1371/journal.pone.0288119. eCollection 2023.
3
Migratory behavior of eastern North Pacific gray whales tracked using a hydrophone array.
PLoS One. 2017 Oct 30;12(10):e0185585. doi: 10.1371/journal.pone.0185585. eCollection 2017.
4
Fin whale sound reception mechanisms: skull vibration enables low-frequency hearing.
PLoS One. 2015 Jan 29;10(1):e0116222. doi: 10.1371/journal.pone.0116222. eCollection 2015.
5
A new acoustic portal into the odontocete ear and vibrational analysis of the tympanoperiotic complex.
PLoS One. 2010 Aug 4;5(8):e11927. doi: 10.1371/journal.pone.0011927.
6
Acoustic pathways revealed: simulated sound transmission and reception in Cuvier's beaked whale (Ziphius cavirostris).
Bioinspir Biomim. 2008 Mar;3:016001. doi: 10.1088/1748-3182/3/1/016001. Epub 2008 Feb 4.
8
Cuvier's beaked whale (Ziphius cavirostris) head tissues: physical properties and CT imaging.
J Exp Biol. 2005 Jun;208(Pt 12):2319-32. doi: 10.1242/jeb.01624.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验