Suppr超能文献

长须鲸的声音接收机制:头骨振动实现低频听力。

Fin whale sound reception mechanisms: skull vibration enables low-frequency hearing.

作者信息

Cranford Ted W, Krysl Petr

机构信息

San Diego State University, Department of Biology, San Diego, California, United States of America, and Quantitative Morphology Consulting, Inc., San Diego, California, United States of America.

University of California San Diego, Department of Structural Engineering, La Jolla, California, United States of America.

出版信息

PLoS One. 2015 Jan 29;10(1):e0116222. doi: 10.1371/journal.pone.0116222. eCollection 2015.

Abstract

Hearing mechanisms in baleen whales (Mysticeti) are essentially unknown but their vocalization frequencies overlap with anthropogenic sound sources. Synthetic audiograms were generated for a fin whale by applying finite element modeling tools to X-ray computed tomography (CT) scans. We CT scanned the head of a small fin whale (Balaenoptera physalus) in a scanner designed for solid-fuel rocket motors. Our computer (finite element) modeling toolkit allowed us to visualize what occurs when sounds interact with the anatomic geometry of the whale's head. Simulations reveal two mechanisms that excite both bony ear complexes, (1) the skull-vibration enabled bone conduction mechanism and (2) a pressure mechanism transmitted through soft tissues. Bone conduction is the predominant mechanism. The mass density of the bony ear complexes and their firmly embedded attachments to the skull are universal across the Mysticeti, suggesting that sound reception mechanisms are similar in all baleen whales. Interactions between incident sound waves and the skull cause deformations that induce motion in each bony ear complex, resulting in best hearing sensitivity for low-frequency sounds. This predominant low-frequency sensitivity has significant implications for assessing mysticete exposure levels to anthropogenic sounds. The din of man-made ocean noise has increased steadily over the past half century. Our results provide valuable data for U.S. regulatory agencies and concerned large-scale industrial users of the ocean environment. This study transforms our understanding of baleen whale hearing and provides a means to predict auditory sensitivity across a broad spectrum of sound frequencies.

摘要

须鲸(须鲸亚目)的听觉机制基本上还不为人所知,但它们的发声频率与人为声源重叠。通过将有限元建模工具应用于X射线计算机断层扫描(CT),为一头长须鲸生成了合成听力图。我们在一台为固体燃料火箭发动机设计的扫描仪中,对一头小长须鲸(长须鲸)的头部进行了CT扫描。我们的计算机(有限元)建模工具包使我们能够可视化声音与鲸鱼头骨解剖结构相互作用时会发生什么。模拟揭示了两种激发两个骨质耳复合体的机制,(1)颅骨振动引发的骨传导机制,以及(2)通过软组织传播的压力机制。骨传导是主要机制。骨质耳复合体的质量密度及其与头骨的牢固嵌入连接在须鲸亚目中是普遍存在的,这表明所有须鲸的声音接收机制相似。入射声波与头骨之间的相互作用会导致变形,从而在每个骨质耳复合体中引发运动,从而使对低频声音的听力敏感度最佳。这种主要的低频敏感度对于评估须鲸对人为声音的暴露水平具有重要意义。在过去的半个世纪里,人为海洋噪音的喧嚣声一直在稳步增加。我们的研究结果为美国监管机构和关注海洋环境的大型工业用户提供了有价值的数据。这项研究改变了我们对须鲸听力的理解,并提供了一种预测广泛声音频率范围内听觉敏感度的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8a1/4310601/cf89ec9c60a9/pone.0116222.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验