Sharma Dixa, Vaishnav Bhalendu S, Pandya Nupur, Pataniya Pratik, Sumesh C K, Mandal Palash
Department of Biological Sciences, P D Patel Institute of Applied Sciences, Charotar University of Science and Technology, Anand, Gujarat, India.
H M Patel Centre for Medical Care and Education, Charutar Arogya Mandal, Karamsad, India.
Gastroenterol Res Pract. 2025 Apr 16;2025:9948444. doi: 10.1155/grp/9948444. eCollection 2025.
A potential contributing factor in the development of various metabolic diseases such as nonalcoholic fatty liver disease (NAFLD) could be oxidative stress and the production of reactive oxygen radicals. A high level of lipid peroxidation, including oxidative stress, can cause irreversible effects. We investigated the consequences of NAFLD on the reducing power of the liver in patients through plasma antioxidant capacity using screen-printed electrodes (SPEs). The study includes a total of 67 patient's population with steatosis ( = 29) and steatohepatitis ( = 38). Anodic current intensity (), anodic wave area (), and the biological sample oxidation potentials can be determined via cyclic voltammetry (CV) analysis. The enzyme glutathione peroxidase (GPx) and products of oxidative damage such as malondialdehyde (MDA), advanced glycation-end product (AGE), total status of oxidants (TOS), nitric oxide (NO), and cytokines analysis (qRT-PCR) of key mediators such as PNPLA3 in lipid metabolism, TIMP1 in fibrosis, and proinflammatory cytokines like NF-B, TNF-, and IL-6, which are crucial for understanding NAFLD progression were recorded to further validate the CV obtained results along with and morphological changes through scanning electron microscope (SEM). The developed method measured oxidative stress with an error of less than 1.3% in human plasma samples, wherein the steatohepatitis caused a spike modification in the anodic current AC and AC ( < 0.01) compared to healthy humans. The presented electroanalytical methodology could be widely used for easy and rapid subjects' disease status detection. In addition to monitoring the response of subjects to treatment and providing nutritional supplements, these results may also be used for screening specific populations.
诸如非酒精性脂肪性肝病(NAFLD)等各种代谢性疾病发展过程中的一个潜在促成因素可能是氧化应激和活性氧自由基的产生。高水平的脂质过氧化,包括氧化应激,可导致不可逆的影响。我们通过使用丝网印刷电极(SPEs)的血浆抗氧化能力来研究NAFLD对患者肝脏还原能力的影响。该研究共纳入了67名患有脂肪变性(n = 29)和脂肪性肝炎(n = 38)的患者群体。阳极电流强度(I)、阳极波面积(A)以及生物样品氧化电位可通过循环伏安法(CV)分析来确定。记录了酶谷胱甘肽过氧化物酶(GPx)以及氧化损伤产物,如丙二醛(MDA)、晚期糖基化终产物(AGE)、氧化剂总状态(TOS)、一氧化氮(NO),并通过实时定量聚合酶链反应(qRT-PCR)分析了脂质代谢中的关键介质如PNPLA3、纤维化中的TIMP1以及促炎细胞因子如NF-κB、TNF-α和IL-6等,这些对于理解NAFLD进展至关重要,以进一步验证CV获得的结果以及通过扫描电子显微镜(SEM)观察到的形态变化。所开发的方法在人血浆样品中测量氧化应激的误差小于1.3%,其中与健康人相比,脂肪性肝炎导致阳极电流IAC和AAC出现尖峰变化(P < 0.01)。所提出的电分析方法可广泛用于简便快速地检测受试者的疾病状态。除了监测受试者对治疗的反应并提供营养补充剂外,这些结果还可用于筛查特定人群。