Tanwar Swati, Anantha Pooja, Wu Lintong, Barman Ishan
Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218.
The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University, School of Medicine, Baltimore, MD 21205.
ACS Appl Nano Mater. 2024 Jan 26;7(2):1636-1645. doi: 10.1021/acsanm.3c04574. Epub 2024 Jan 8.
Ordered plasmonic nanoparticle arrays are highly desirable for optical sensing, as they provide uniformly distributed plasmonic hotspots due to their periodic order and near-field coupling. Anisotropic-shaped bimetallic nanoparticles are of particular interest as their hybridized plasmonic modes enable precise tuning of plasmonic resonance and optical responses. However, the controlled assembly of large-scale arrays of bimetallic nanoparticles with uniformly distributed hotspots remains a challenge. In this study, we present a highly robust and reproducible method for creating large-area vertically aligned arrays of bimetallic Au-Ag nanorods by epitaxially growing Ag over preassembled Au nanorods. Structural characterization using electron microscopy and X-ray photoelectron spectroscopy confirms the formation of a uniform thin layer of Ag, creating a bimetallic Au-Ag nanorod array. We also demonstrate the efficacy of the designed nanoarrays for Surface-Enhanced Raman Scattering (SERS) spectroscopy. Our experimental and computational studies show considerably enhanced optical responses of bimetallic Au-Ag nanorods compared to their monometallic counterparts. The scalability, cost-effectiveness, and reproducibility of this method make it a versatile platform for creating various structures by varying guest nanoparticles in suspensions, with broad applications in biomedical research, food safety surveillance, and environmental monitoring.
有序的等离子体纳米粒子阵列对于光学传感非常理想,因为它们由于其周期性排列和近场耦合而提供均匀分布的等离子体热点。具有各向异性形状的双金属纳米粒子特别受关注,因为它们的混合等离子体模式能够精确调节等离子体共振和光学响应。然而,将具有均匀分布热点的双金属纳米粒子大规模阵列进行可控组装仍然是一个挑战。在本研究中,我们提出了一种高度稳健且可重复的方法,通过在预组装的金纳米棒上外延生长银来制备大面积垂直排列的双金属金 - 银纳米棒阵列。使用电子显微镜和X射线光电子能谱进行的结构表征证实了银均匀薄层的形成,从而形成了双金属金 - 银纳米棒阵列。我们还展示了所设计的纳米阵列用于表面增强拉曼散射(SERS)光谱的功效。我们的实验和计算研究表明,与单金属纳米棒相比,双金属金 - 银纳米棒的光学响应有显著增强。该方法的可扩展性、成本效益和可重复性使其成为一个通用平台,通过改变悬浮液中的客体纳米粒子来创建各种结构,在生物医学研究、食品安全监测和环境监测等领域具有广泛应用。