Suppr超能文献

保险领域的人工智能革命:弥合研究与现实的差距。

AI revolution in insurance: bridging research and reality.

作者信息

Bhattacharya Sukriti, Castignani German, Masello Leandro, Sheehan Barry

机构信息

Human-Centered AI, Data and Software (HANDS), Luxembough Institute of Science and Technology, Maison de l'innovation, Esch-sur-Alzette, Luxembourg.

Kemmy Business School, University of Limerick, Limerick, Ireland.

出版信息

Front Artif Intell. 2025 Apr 9;8:1568266. doi: 10.3389/frai.2025.1568266. eCollection 2025.

Abstract

This paper comprehensively reviews artificial intelligence (AI) applications in the insurance industry. We focus on the automotive, health, and property insurance domains. To conduct this study, we followed the PRISMA guidelines for systematic reviews. This rigorous methodology allowed us to examine recent academic research and industry practices thoroughly. This study also identifies several key challenges that must be addressed to mitigate operational and underwriting risks, including data quality issues that could lead to biased risk assessments, regulatory compliance requirements for risk governance, ethical considerations in automated decision-making, and the need for explainable AI systems to ensure transparent risk evaluation and pricing models. This review highlights important research gaps by comparing academic studies with real-world industry implementations. It also explores emerging areas where AI can improve efficiency and drive innovation in the insurance sector. The insights gained from this work provide valuable guidance for researchers, policymakers, and insurance industry practitioners.

摘要

本文全面回顾了人工智能(AI)在保险业中的应用。我们重点关注汽车保险、健康保险和财产保险领域。为开展本研究,我们遵循了系统评价的PRISMA指南。这种严谨的方法使我们能够全面审视近期的学术研究和行业实践。本研究还确定了为减轻运营和承保风险必须解决的几个关键挑战,包括可能导致有偏差风险评估的数据质量问题、风险治理的监管合规要求、自动化决策中的伦理考量,以及对可解释人工智能系统的需求,以确保透明的风险评估和定价模型。通过将学术研究与实际行业实施进行比较,本综述突出了重要的研究差距。它还探索了人工智能可以提高效率并推动保险行业创新的新兴领域。从这项工作中获得的见解为研究人员、政策制定者和保险行业从业者提供了宝贵的指导。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6468/12014612/1cce9f37929d/frai-08-1568266-g0001.jpg

相似文献

1
AI revolution in insurance: bridging research and reality.
Front Artif Intell. 2025 Apr 9;8:1568266. doi: 10.3389/frai.2025.1568266. eCollection 2025.
3
The future of Cochrane Neonatal.
Early Hum Dev. 2020 Nov;150:105191. doi: 10.1016/j.earlhumdev.2020.105191. Epub 2020 Sep 12.
5
Artificial Intelligence and Finance: A bibliometric review on the Trends, Influences, and Research Directions.
F1000Res. 2025 Jan 23;14:122. doi: 10.12688/f1000research.160959.1. eCollection 2025.
6
Towards secure and trusted AI in healthcare: A systematic review of emerging innovations and ethical challenges.
Int J Med Inform. 2025 Mar;195:105780. doi: 10.1016/j.ijmedinf.2024.105780. Epub 2024 Dec 30.
7
Examining the integration of artificial intelligence in supply chain management from Industry 4.0 to 6.0: a systematic literature review.
Front Artif Intell. 2025 Jan 20;7:1477044. doi: 10.3389/frai.2024.1477044. eCollection 2024.
9
Utilizing large language models for gastroenterology research: a conceptual framework.
Therap Adv Gastroenterol. 2025 Apr 1;18:17562848251328577. doi: 10.1177/17562848251328577. eCollection 2025.

本文引用的文献

1
Environment sustainability with smart grid sensor.
Front Artif Intell. 2025 Feb 19;7:1510410. doi: 10.3389/frai.2024.1510410. eCollection 2024.
2
Bayesian model of tilling wheat confronting climatic and sustainability challenges.
Front Artif Intell. 2024 Aug 27;7:1402098. doi: 10.3389/frai.2024.1402098. eCollection 2024.
3
A framework for extending co-creative communication models to sustainability research.
Front Artif Intell. 2024 Aug 5;7:1236310. doi: 10.3389/frai.2024.1236310. eCollection 2024.
4
The application of artificial intelligence in health financing: a scoping review.
Cost Eff Resour Alloc. 2023 Nov 6;21(1):83. doi: 10.1186/s12962-023-00492-2.
5
Use of big data from health insurance for assessment of cardiovascular outcomes.
Front Artif Intell. 2023 May 3;6:1155404. doi: 10.3389/frai.2023.1155404. eCollection 2023.
7
Using contextual data to predict risky driving events: A novel methodology from explainable artificial intelligence.
Accid Anal Prev. 2023 May;184:106997. doi: 10.1016/j.aap.2023.106997. Epub 2023 Feb 26.
8
Machine Learning-Based Regression Framework to Predict Health Insurance Premiums.
Int J Environ Res Public Health. 2022 Jun 28;19(13):7898. doi: 10.3390/ijerph19137898.
10
How to properly use the PRISMA Statement.
Syst Rev. 2021 Apr 19;10(1):117. doi: 10.1186/s13643-021-01671-z.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验