Suppr超能文献

局部复发性直肠癌靶区勾画的多学科方法:一项探索性研究。

Multidisciplinary approach to target volume delineation in locally recurrent rectal cancer: An explorative study.

作者信息

Piqeur F, van Gruijthuijsen D S C, Nederend J, Ceha H, Stam T, Dieters M, Meijnen P, Bakker-van der Jagt M, Intven M, Verrijssen A E, Cnossen J S, Berbee M, Hartogh M den, Bantema-Joppe E J, De Kroon M, Paardekooper G, Gielens M P M, Daniels-Gooszen A W, Lahaye M J, Lambregts D M J, Oei S A, Houwers J B, Horsthuis K, Hurkmans C, Rutten H, Burger J W A, Marijnen C A M, Peulen H

机构信息

Department of Radiation Oncology, Catharina Hospital, Michelangelolaan 2, 5623EJ Eindhoven, Netherlands (the).

Department of Radiation Oncology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, Netherlands (the).

出版信息

Clin Transl Radiat Oncol. 2025 Apr 1;53:100948. doi: 10.1016/j.ctro.2025.100948. eCollection 2025 Jul.

Abstract

BACKGROUND AND PURPOSE

Interobserver variation (IOV) in locally recurrent rectal cancer (LRRC) delineations is large, possibly because of different interpretations of imaging. An explorative study was performed to investigate the benefit of additional delineations by expert radiologists.

MATERIALS AND METHODS

14 cases of LRRC were delineated on planning CT by 8 radiologists (RADs) to construct a median and total radiology contour, followed by 12 radiation oncologists (ROs), without (GTV-) or with (GTV+) the additional contours. IOV was calculated separately for RADs, GTV- and GTV+. The following metrics were used: the Surface Dice Similarity Coefficient (SDSC), Dice similarity coefficient (DSC), and Hausdorff Distance at the 98th percentile (HD98%). The median SDSC, DSC, and HD98% of GTV- and GTV+ were compared. Sub-analyses of IOV in different recurrence types were performed.

RESULTS

Median SDSC significantly improved from GTV- to GTV+ overall, but a significant benefit could not be proven in individual cases. Additional radiological input consistently improved all parameters in 4/14 cases (29 %). Geographical miss occurred after radiological input in 7 %. Subgroup analyses show large IOV in mainly fibrotic and intraluminal recurrences. Little IOV is seen in solitary nodal recurrences.

CONCLUSION

This study highlights target volume delineation challenges in LRRC. Overall, radiological input reduced IOV amongst ROs in target volume delineation for LRRC. Large differences do however exist amongst recurrence types. A standard terminology for LRRC and close collaboration between radiologists and radiation oncologists seems necessary to reduce IOV and improve quality of care.

摘要

背景与目的

局部复发性直肠癌(LRRC)轮廓划定中的观察者间差异(IOV)很大,可能是因为对影像的解读不同。开展了一项探索性研究,以调查专家放射科医生进行额外轮廓划定的益处。

材料与方法

8名放射科医生(RADs)在计划CT上对14例LRRC进行轮廓划定,以构建中位和总体放射学轮廓,随后12名放射肿瘤学家(ROs)在无额外轮廓(GTV-)或有额外轮廓(GTV+)的情况下进行轮廓划定。分别计算RADs、GTV-和GTV+的IOV。使用了以下指标:表面骰子相似系数(SDSC)、骰子相似系数(DSC)和第98百分位数处的豪斯多夫距离(HD98%)。比较GTV-和GTV+的中位SDSC、DSC和HD98%。对不同复发类型的IOV进行了亚组分析。

结果

总体而言,从GTV-到GTV+,中位SDSC有显著改善,但在个别病例中无法证明有显著益处。在4/14例(29%)病例中,额外的放射学输入持续改善了所有参数。7%的病例在放射学输入后出现了地理性遗漏。亚组分析显示,主要在纤维化和腔内复发中存在较大的IOV。在孤立性淋巴结复发中观察到的IOV较小。

结论

本研究突出了LRRC中靶区轮廓划定的挑战。总体而言,放射学输入减少了ROs在LRRC靶区轮廓划定中的IOV。然而,不同复发类型之间确实存在很大差异。似乎有必要采用LRRC的标准术语,并加强放射科医生和放射肿瘤学家之间的密切合作,以减少IOV并提高护理质量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e688/12017975/67d30a065b5d/gr1.jpg

相似文献

1
Multidisciplinary approach to target volume delineation in locally recurrent rectal cancer: An explorative study.
Clin Transl Radiat Oncol. 2025 Apr 1;53:100948. doi: 10.1016/j.ctro.2025.100948. eCollection 2025 Jul.
2
Development of a consensus-based delineation guideline for locally recurrent rectal cancer.
Radiother Oncol. 2022 Dec;177:214-221. doi: 10.1016/j.radonc.2022.11.008. Epub 2022 Nov 21.
3
Variability of gross tumour volume delineation: MRI and CT based tumour and lymph node delineation for lung radiotherapy.
Radiother Oncol. 2022 Feb;167:292-299. doi: 10.1016/j.radonc.2021.11.036. Epub 2021 Dec 8.
4
Interobserver variation in tumor delineation of liver metastases using Magnetic Resonance Imaging.
Phys Imaging Radiat Oncol. 2024 May 27;30:100592. doi: 10.1016/j.phro.2024.100592. eCollection 2024 Apr.
5
Evaluating diffusion-weighted magnetic resonance imaging for target volume delineation in head and neck radiotherapy.
J Med Imaging Radiat Oncol. 2019 Jun;63(3):399-407. doi: 10.1111/1754-9485.12866. Epub 2019 Feb 28.
6
Delineation uncertainties of tumour volumes on MRI of head and neck cancer patients.
Clin Transl Radiat Oncol. 2022 Aug 6;36:121-126. doi: 10.1016/j.ctro.2022.08.005. eCollection 2022 Sep.
7
Benefits of automated gross tumor volume segmentation in head and neck cancer using multi-modality information.
Radiother Oncol. 2023 May;182:109574. doi: 10.1016/j.radonc.2023.109574. Epub 2023 Feb 21.
10
Deep learning for elective neck delineation: More consistent and time efficient.
Radiother Oncol. 2020 Dec;153:180-188. doi: 10.1016/j.radonc.2020.10.007. Epub 2020 Oct 14.

本文引用的文献

1
Imaging in pelvic exenteration-a multidisciplinary practice guide from the ESGAR-SAR-ESUR-PelvEx collaborative group.
Eur Radiol. 2025 May;35(5):2681-2691. doi: 10.1007/s00330-024-10940-z. Epub 2024 Aug 25.
2
Rectal cancer pelvic recurrence: imaging patterns and key concepts to guide treatment planning.
Abdom Radiol (NY). 2023 Jun;48(6):1867-1879. doi: 10.1007/s00261-022-03746-4. Epub 2023 Feb 4.
3
Development of a consensus-based delineation guideline for locally recurrent rectal cancer.
Radiother Oncol. 2022 Dec;177:214-221. doi: 10.1016/j.radonc.2022.11.008. Epub 2022 Nov 21.
7
Lateral Lymph Nodes in Rectal Cancer: Do we all Think the Same? A Review of Multidisciplinary Obstacles and Treatment Recommendations.
Clin Colorectal Cancer. 2022 Jun;21(2):80-88. doi: 10.1016/j.clcc.2022.02.002. Epub 2022 Feb 19.
10
Metrics to evaluate the performance of auto-segmentation for radiation treatment planning: A critical review.
Radiother Oncol. 2021 Jul;160:185-191. doi: 10.1016/j.radonc.2021.05.003. Epub 2021 May 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验