Suppr超能文献

深度学习在选择性颈部勾画中的应用:更一致、更高效。

Deep learning for elective neck delineation: More consistent and time efficient.

机构信息

KU Leuven, Dept. Oncology, Laboratory of Experimental Radiotherapy, & UZ Leuven, Radiation Oncology, Belgium.

KU Leuven, Dept. ESAT, Processing Speech and Images (PSI), & UZ Leuven, Medical Imaging Research Center, Leuven, Belgium.

出版信息

Radiother Oncol. 2020 Dec;153:180-188. doi: 10.1016/j.radonc.2020.10.007. Epub 2020 Oct 14.

Abstract

BACKGROUND/PURPOSE: Delineation of the lymph node levels of the neck for irradiation of the elective clinical target volume in head and neck cancer (HNC) patients is time consuming and prone to interobserver variability (IOV), although international consensus guidelines exist. The aim of this study was to develop and validate a 3D convolutional neural network (CNN) for semi-automated delineation of all nodal neck levels, focussing on delineation accuracy, efficiency and consistency compared to manual delineation.

MATERIAL/METHODS: The CNN was trained on a clinical dataset of 69 HNC patients. For validation, 17 lymph node levels were manually delineated in 16 new patients by two observers, independently, using international consensus guidelines. Automated delineations were generated by applying the CNN and were subsequently corrected by both observers separately as needed for clinical acceptance. Both delineations were performed two weeks apart and blinded to each other. IOV was quantified using Dice similarity coefficient (DSC), mean surface distance (MSD) and Hausdorff distance (HD). To assess automated delineation accuracy, agreement between automated and corrected delineations were evaluated using the same measures. To assess efficiency, the time taken for manual and corrected delineations were compared. In a second step, only the clinically relevant neck levels were selected and delineated, once again manually and by applying and correcting the network.

RESULTS

When all lymph node levels were delineated, time taken for correcting automated delineations compared to manual delineations was significantly shorter for both observers (mean: 35 vs 52 min, p < 10). Based on DSC, automated delineation agreed best with corrected delineation for lymph node levels Ib, II-IVa, VIa, VIb, VIIa, VIIb (DSC >85%). Manual corrections necessary for clinical acceptance were 1.4 mm MSD on average and were especially low (<1mm) for levels II-IVa, VIa, VIIa and VIIb. IOV was significantly smaller with automated compared to manual delineations (MSD: 1.4 mm vs 2.5 mm, p < 10). When delineating only the clinically relevant neck levels, the correction time was also significantly shorter (mean: 8 vs 15 min, p < 10). Based on DSC, automated delineation agreed very well with corrected delineation (DSC > 87%). Manual corrections necessary for clinical acceptance were 1.3 mm MSD on average. IOV was significantly smaller with automated compared to manual delineations (MSD: 0.8 mm vs 2.3 mm, p < 10).

CONCLUSION

The CNN developed for automated delineation of the elective lymph node levels in the neck in HNC was shown to be more efficient and consistent compared to manual delineation, which justifies its implementation in clinical practice.

摘要

背景/目的:尽管存在国际共识指南,但对头颈部癌症(HNC)患者选择性临床靶区的颈部淋巴结水平进行勾画是一项耗时且容易出现观察者间变异性(IOV)的工作。本研究的目的是开发和验证一种用于自动勾画所有颈部淋巴结水平的三维卷积神经网络(CNN),重点关注与手动勾画相比的勾画准确性、效率和一致性。

材料/方法:该 CNN 是在 69 例 HNC 患者的临床数据集上进行训练的。为了验证,由两名观察者独立使用国际共识指南在 16 例新患者中手动勾画了 17 个淋巴结水平。通过应用 CNN 生成自动勾画,然后由两名观察者分别根据临床需要进行单独校正。这两种勾画均在两周内进行,彼此之间相互盲法。使用 Dice 相似系数(DSC)、平均表面距离(MSD)和 Hausdorff 距离(HD)来量化 IOV。为了评估自动勾画的准确性,使用相同的测量方法评估自动勾画与校正勾画之间的一致性。为了评估效率,比较了手动和校正勾画所需的时间。在第二步中,仅选择临床相关的颈部水平,再次手动和应用及校正网络进行勾画。

结果

当勾画所有淋巴结水平时,与手动勾画相比,校正自动勾画所需的时间对于两名观察者均显著缩短(平均:35 分钟与 52 分钟,p<0.01)。基于 DSC,自动勾画与校正勾画的一致性最佳,用于 Ib、II-IVa、VIa、VIb、VIIa、VIIb 淋巴结水平(DSC>85%)。临床可接受的手动校正平均需要 1.4mm MSD,对于 II-IVa、VIa、VIIa 和 VIIb 水平,校正需要尤其小(<1mm)。与手动勾画相比,IOV 显著减小(MSD:1.4mm 与 2.5mm,p<0.01)。当仅勾画临床相关的颈部水平时,校正时间也显著缩短(平均:8 分钟与 15 分钟,p<0.01)。基于 DSC,自动勾画与校正勾画的一致性非常好(DSC>87%)。临床可接受的手动校正平均需要 1.3mm MSD。与手动勾画相比,IOV 显著减小(MSD:0.8mm 与 2.3mm,p<0.01)。

结论

为 HNC 中颈部选择性淋巴结水平的自动勾画而开发的 CNN 与手动勾画相比,效率更高且一致性更好,这证明了其在临床实践中的实施是合理的。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验