Suppr超能文献

利用多模态信息进行头颈部癌症自动大体肿瘤体积分割的优势。

Benefits of automated gross tumor volume segmentation in head and neck cancer using multi-modality information.

机构信息

KU Leuven, Dept. Oncology, Laboratory of Experimental Radiotherapy, & UZ Leuven, Radiation Oncology, B-3000 Leuven, Belgium.

KU Leuven, Dept. ESAT, Processing Speech and Images (PSI), & UZ Leuven, Medical Imaging Research Center, B-3000 Leuven, Belgium.

出版信息

Radiother Oncol. 2023 May;182:109574. doi: 10.1016/j.radonc.2023.109574. Epub 2023 Feb 21.

Abstract

PURPOSE

Gross tumor volume (GTV) delineation for head and neck cancer (HNC) radiation therapy planning is time consuming and prone to interobserver variability (IOV). The aim of this study was (1) to develop an automated GTV delineation approach of primary tumor (GTVp) and pathologic lymph nodes (GTVn) based on a 3D convolutional neural network (CNN) exploiting multi-modality imaging input as required in clinical practice, and (2) to validate its accuracy, efficiency and IOV compared to manual delineation in a clinical setting.

METHODS

Two datasets were retrospectively collected from 150 clinical cases. CNNs were trained for GTV delineation with consensus delineation as ground truth, with either single (CT) or co-registered multi-modal (CT + PET or CT + MRI) imaging data as input. For validation, GTVs were delineated on 20 new cases by two observers, once manually, once by correcting the delineations generated by the CNN.

RESULTS

Both multi-modality CNNs performed better than the single-modality CNN and were selected for clinical validation. Mean Dice Similarity Coefficient (DSC) for (GTVp, GTVn) respectively between automated and manual delineations was (69%, 79%) for CT + PET and (59%,71%) for CT + MRI. Mean DSC between automated and corrected delineations was (81%,89%) for CT + PET and (69%,77%) for CT + MRI. Mean DSC between observers was (76%,86%) for manual delineations and (95%,96%) for corrected delineations, indicating a significant decrease in IOV (p < 10), while efficiency increased significantly (48%, p < 10).

CONCLUSION

Multi-modality automated delineation of GTV of HNC was shown to be more efficient and consistent compared to manual delineation in a clinical setting and beneficial over a single-modality approach.

摘要

目的

头颈部癌症(HNC)放射治疗计划的大体肿瘤体积(GTV)勾画既耗时又容易受到观察者间变异(IOV)的影响。本研究的目的是:(1)开发一种基于 3D 卷积神经网络(CNN)的自动 GTV 勾画方法,该方法利用临床实践中所需的多模态成像输入来勾画原发肿瘤(GTVp)和病理性淋巴结(GTVn);(2)在临床环境中验证其与手动勾画相比的准确性、效率和 IOV。

方法

回顾性地从 150 例临床病例中收集了两个数据集。使用共识勾画作为金标准,使用单模态(CT)或配准的多模态(CT+PET 或 CT+MRI)成像数据作为输入来训练 CNN 进行 GTV 勾画。为了验证,由两名观察者分别对 20 例新病例进行勾画,一次手动勾画,一次纠正由 CNN 生成的勾画。

结果

多模态 CNN 均优于单模态 CNN,因此被选中进行临床验证。自动勾画与手动勾画的(GTVp、GTVn)之间的平均 Dice 相似性系数(DSC)分别为 CT+PET(69%,79%)和 CT+MRI(59%,71%)。自动勾画与纠正勾画之间的平均 DSC 分别为 CT+PET(81%,89%)和 CT+MRI(69%,77%)。手动勾画的观察者间平均 DSC 为(76%,86%),纠正勾画的观察者间平均 DSC 为(95%,96%),表明 IOV 显著降低(p<10),而效率显著提高(48%,p<10)。

结论

与手动勾画相比,多模态自动勾画 HNC 的 GTV 在临床环境中更有效且一致性更好,并且优于单模态方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验