Liu Baohua, Yu Luyan, Xiao Qinghua, Zhang Shilin, Li Guanjie, Ren Kaixin, Zhu Yuxuan, Wang Chao, Wang Qinghong
School of Chemistry and Materials Science, Jiangsu Normal University Xuzhou Jiangsu 221116 P. R. China
School of Chemical Engineering, Faculty of Sciences, Engineering and Technology, The University of Adelaide Adelaide SA 5005 Australia
Chem Sci. 2024 Sep 6;15(39):16118-24. doi: 10.1039/d4sc05127k.
Aqueous Zn-ion batteries are promising candidates for next-generation energy storage devices due to the advantages of high safety, low cost and good environmental friendliness. However, the uncontrollable dendrite growth and undesirable side reactions occurring on the Zn anode result in poor cycling stability. Herein, a Lewis base, triethanolamine, is used as the electrolyte additive to construct a hybrid solid-electrolyte interphase layer composed of a static ZnSO·3Zn(OH)·4HO layer and dynamic quaternary ammonium ion adsorption layer. The static SEI layer acts as a physical barrier between the Zn anode and electrolyte, thus effectively suppressing chemical corrosion and the hydrogen evolution reaction. The dynamic layer can not only regulate the ion flux at the interface, but also promote the de-solvation of solvated Zn, thus leading to homogenous Zn deposition along the (002) electro-crystallization orientation. As a result, the Zn anode demonstrates an extended cycle life of 2500 h at a current density of 1.0 mA cm, with an areal capacity of 1.0 mA h cm and a high coulombic efficiency (CE) of 98.94%. The Zn‖VO cells exhibit a specific capacity of 178.4 mA h g after 500 cycles, indicating both high capacity and robust cycling stability, which are essential for practical applications.
水系锌离子电池因其高安全性、低成本和良好的环境友好性等优点,是下一代储能设备的有前途的候选者。然而,锌阳极上不可控的枝晶生长和不良的副反应导致循环稳定性较差。在此,一种路易斯碱三乙醇胺被用作电解质添加剂,以构建由静态的ZnSO₄·3Zn(OH)₂·4H₂O层和动态的季铵离子吸附层组成的混合固体电解质界面层。静态的固体电解质界面(SEI)层作为锌阳极和电解质之间的物理屏障,从而有效地抑制化学腐蚀和析氢反应。动态层不仅可以调节界面处的离子通量,还可以促进溶剂化锌的去溶剂化,从而导致锌沿着(002)电结晶取向均匀沉积。结果,锌阳极在电流密度为1.0 mA cm⁻²、面积容量为1.0 mA h cm⁻²和高库仑效率(CE)为98.94%的情况下,循环寿命延长至2500小时。锌‖钒氧化物(VO)电池在500次循环后表现出178.4 mA h g⁻¹的比容量,表明其具有高容量和强大的循环稳定性,这对于实际应用至关重要。