Marinca Bogdan, Marinca Vasile, Bogdan Ciprian
Politehnica University of Timișoara, 300006, Timișoara, Romania.
Center for Advanced and Fundamental Technical Research, Romanian Academy-Timişoara Branch, 300223, Timișoara, Romania.
Chaos Solitons Fractals. 2021 Jun;147:110949. doi: 10.1016/j.chaos.2021.110949. Epub 2021 May 12.
The aim of the present work is to establish an approximate analytical solution for the nonlinear Susceptible, Exposed, Infected, Recovered (SEIR) model applied to novel coronavirus COVID-19. The mathematical model depending of five nonlinear differential equations, is studied and approximate solutions are obtained using Optimal Auxiliary Functions Method (OAFM). Our technique ensures a fast convergence of the solutions after only one iteration. The nonstandard part of OAFM is described by the presence of so-called auxiliary functions and of the optimal convergence-control parameters. We have a great freedom to select the auxiliary functions and the number of optimal convergence-control parameters which are optimally determined. Our approach is independent of the presence of small or large parameters in the governing equations or in the initial/boundary conditions, is effective, simple and very efficient.
本工作的目的是为应用于新型冠状病毒COVID-19的非线性易感者、暴露者、感染者、康复者(SEIR)模型建立一个近似解析解。研究了由五个非线性微分方程组成的数学模型,并使用最优辅助函数法(OAFM)获得了近似解。我们的技术确保仅经过一次迭代后解就能快速收敛。OAFM的非标准部分由所谓的辅助函数和最优收敛控制参数的存在来描述。我们在选择辅助函数和最优确定的最优收敛控制参数的数量方面有很大的自由度。我们的方法与控制方程或初始/边界条件中是否存在小参数或大参数无关,是有效、简单且非常高效的。