Wu Quan, Chu Haiping, Liu Zhongkui, Yang Lihang, Zhou Xiaosong, He Yinfeng, Nie Yi
School of Mechanical and Electrical Engineering, Guizhou Normal University, Guiyang 550001, China.
Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, Ningbo 315100, China.
Materials (Basel). 2025 Apr 2;18(7):1603. doi: 10.3390/ma18071603.
Laser cladding (LC) is a promising technique for repairing aluminum alloy components, yet challenges like cracks and uneven surfaces persist due to unstable melt flow and thermal stress. This study employs both fluid flow and stress field models to investigate multi-track LC repair mechanisms. Using a finite volume method (FVM), the dynamic evolution of the molten pool was quantified, revealing a maximum flow velocity of 0.2 m/s, a depth of 0.7 mm, and a width of 4 mm under optimized parameters (1600 W laser power, 600 mm/min scan speed). The model also identified that surface flaws between 300 and 900 μm were fully melted and repaired by a current or adjacent track. Finite element analysis (FEA) showed that multi-layer cladding induced a cumulative thermal stress exceeding 1300 MPa at interlayer interfaces, necessitating ≥ 3 s cooling intervals to mitigate cracking risks. These findings provide critical insights into process optimization, demonstrating that adjusting laser power and scan speed can control molten pool stability and reduce residual stress, thus improving repair quality for aluminum alloys.
激光熔覆(LC)是一种很有前景的铝合金部件修复技术,但由于熔体流动不稳定和热应力,裂纹和表面不平整等问题仍然存在。本研究采用流体流动和应力场模型来研究多道激光熔覆修复机制。使用有限体积法(FVM)对熔池的动态演变进行了量化,发现在优化参数(1600 W激光功率、600 mm/min扫描速度)下,最大流速为0.2 m/s,深度为0.7 mm,宽度为4 mm。该模型还确定,300至900μm之间的表面缺陷被当前或相邻熔道完全熔化并修复。有限元分析(FEA)表明,多层熔覆在层间界面处产生的累积热应力超过1300 MPa,因此需要≥3 s的冷却间隔来降低开裂风险。这些发现为工艺优化提供了关键见解,表明调整激光功率和扫描速度可以控制熔池稳定性并降低残余应力,从而提高铝合金的修复质量。