de Ávila Ana Isabel, Soria María Eugenia, Martínez-González Brenda, Somovilla Pilar, Mínguez Pablo, Salar-Vidal Llanos, Esteban-Muñoz Mario, Martín-García Marta, Zuñiga Sonia, Sola Isabel, Enjuanes Luis, Gadea Ignacio, Perales Celia, Domingo Esteban
Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Campus de Cantoblanco, Madrid, Spain.
Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain.
J Virol. 2025 May 20;99(5):e0225024. doi: 10.1128/jvi.02250-24. Epub 2025 Apr 24.
Defective genomes are part of SARS-CoV-2 quasispecies. High-resolution, ultra-deep sequencing of bulk RNA from viral populations does not distinguish RNA mutations, insertions, and deletions in viable genomes from those in defective genomes. To quantify SARS-CoV-2 infectious variant progeny, virus from four individual plaques (biological clones) of a preparation of isolate USA-WA1/2020, formed on Vero E6 cell monolayers, was subjected to further biological cloning to yield 9 second-generation and 15 third-generation sub-clones. Consensus genomic sequences of the biological clones and sub-clones included an average of 2.8 variations per viable genome, relative to the consensus sequence of the parental USA-WA1/2020 virus. This value is 6.5-fold lower than the estimates for biological clones of other RNA viruses such as bacteriophage Qβ, foot-and-mouth disease virus, or hepatitis C virus in cell culture. The mutant spectrum complexity of the nsp12 (polymerase)- and spike (S)-coding region was unique in the progeny of each of 10 third-generation sub-clones; they shared 2.4% of the total of 164 different mutations and deletions scored in the 3,719 genomic residues that were screened. The presence of minority out-of-frame deletions revealed the ease of defective genome production from an individual infectious genome. Several low-frequency point mutations and deletions were clade-discordant in that they were not typical of USA-WA1/2020 but served to define the consensus sequences of future SARS-CoV-2 clades. Implications for SARS-CoV-2 adaptability and COVID-19 control of the viable genome heterogeneity and the generation of complex mutant spectra from individual genomes are discussed.IMPORTANCESequencing of biological clones is a means to identify mutations, insertions, and deletions located in viable genomes. This distinction is particularly important for viral populations, such as those of SARS-CoV-2, that contain large proportions of defective genomes. By sequencing biological clones and sub-clones, we quantified the heterogeneity of the viable complement of USA-WA1/2020 to be lower than exhibited by other RNA viruses. This difference may be due to a reduced mutation rate or to limited tolerance of the large coronavirus genome to incorporate mutations and deletions and remain functional or a combination of both influences. The presence of clade-discordant residues in the progeny of individual biological sub-clones suggests limitations in the occupation of sequence space by SARS-CoV-2. However, the complex and unique mutant spectra that are rapidly generated from individual genomes suggest an aptness to confront selective constraints.
缺陷基因组是新冠病毒准种的一部分。对病毒群体的大量RNA进行高分辨率、超深度测序无法区分有活力基因组中的RNA突变、插入和缺失与缺陷基因组中的这些变化。为了量化新冠病毒感染性变异后代,从在Vero E6细胞单层上形成的一株美国华盛顿州1/2020分离株的四个单个噬菌斑(生物克隆)中提取病毒,进行进一步的生物克隆,得到9个第二代和15个第三代亚克隆。相对于亲本美国华盛顿州1/2020病毒的一致序列,生物克隆和亚克隆的一致基因组序列平均每个有活力基因组有2.8个变异。该值比细胞培养中其他RNA病毒(如噬菌体Qβ、口蹄疫病毒或丙型肝炎病毒)生物克隆的估计值低6.5倍。在10个第三代亚克隆的每个后代中,非结构蛋白12(聚合酶)编码区和刺突(S)编码区的突变谱复杂性都是独特的;在筛选的3719个基因组残基中总共164个不同的突变和缺失中,它们共享2.4%。少数移码缺失的存在表明从单个感染性基因组产生缺陷基因组很容易。一些低频点突变和缺失与进化枝不一致,因为它们不是美国华盛顿州1/2020的典型特征,但有助于定义未来新冠病毒进化枝的一致序列。本文讨论了有活力基因组异质性以及单个基因组产生复杂突变谱对新冠病毒适应性和新冠疫情防控的影响。重要性生物克隆测序是识别位于有活力基因组中的突变、插入和缺失的一种方法。这种区分对于像新冠病毒这样含有大量缺陷基因组的病毒群体尤为重要。通过对生物克隆和亚克隆进行测序,我们量化了美国华盛顿州1/2020有活力基因组的异质性低于其他RNA病毒。这种差异可能是由于突变率降低或大型冠状病毒基因组对纳入突变和缺失并保持功能的耐受性有限,或者是这两种影响的组合。单个生物亚克隆后代中存在与进化枝不一致的残基,这表明新冠病毒在序列空间占据方面存在局限性。然而,从单个基因组快速产生的复杂且独特的突变谱表明其有能力应对选择性限制。