Department of Viral Immunology, Helmholtz Centre for Infection Researchgrid.7490.a, Braunschweig, Germany.
Infection Biology Unit, German Primate Centergrid.418215.b, Göttingen, Germany.
J Virol. 2022 Mar 9;96(5):e0218621. doi: 10.1128/jvi.02186-21. Epub 2022 Jan 12.
Recent emergence of SARS-CoV-1 variants demonstrates the potential of this virus for targeted evolution, despite its overall genomic stability. Here we show the dynamics and the mechanisms behind the rapid adaptation of SARS-CoV-2 to growth in Vero E6 cells. The selective advantage for growth in Vero E6 cells is due to increased cleavage efficiency by cathepsins at the mutated S1/S2 site. S1/S2 site also constitutes a heparan sulfate (HS) binding motif that influenced virus growth in Vero E6 cells, but HS antagonist did not inhibit virus adaptation in these cells. The entry of Vero E6-adapted virus into human cells is defective because the mutated spike variants are poorly processed by furin or TMPRSS2. Minor subpopulation that lack the furin cleavage motif in the spike protein rapidly become dominant upon passaging through Vero E6 cells, but wild type sequences are maintained at low percentage in the virus swarm and mediate a rapid reverse adaptation if the virus is passaged again on TMPRSS2 human cells. Our data show that the spike protein of SARS-CoV-2 can rapidly adapt itself to available proteases and argue for deep sequence surveillance to identify the emergence of novel variants. Recently emerging SARS-CoV-2 variants B.1.1.7 (alpha variant), B.1.617.2 (delta variant), and B.1.1.529 (omicron variant) harbor spike mutations and have been linked to increased virus pathogenesis. The emergence of these novel variants highlights coronavirus adaptation and evolution potential, despite the stable consensus genotype of clinical isolates. We show that subdominant variants maintained in the virus population enable the virus to rapidly adapt to selection pressure. Although these adaptations lead to genotype change, the change is not absolute and genomes with original genotype are maintained in the virus swarm. Thus, our results imply that the relative stability of SARS-CoV-2 in numerous independent clinical isolates belies its potential for rapid adaptation to new conditions.
最近出现的 SARS-CoV-1 变异株表明,尽管其整体基因组稳定性较高,但这种病毒仍有针对性进化的潜力。在这里,我们展示了 SARS-CoV-2 快速适应 Vero E6 细胞生长的动态和机制。在 Vero E6 细胞中生长的选择性优势归因于突变的 S1/S2 位点的组织蛋白酶切割效率增加。S1/S2 位点也是硫酸乙酰肝素 (HS) 结合基序,影响病毒在 Vero E6 细胞中的生长,但 HS 拮抗剂并没有抑制病毒在这些细胞中的适应。适应 Vero E6 的病毒进入人细胞的能力受损,因为突变的刺突变体不能被弗林或 TMPRSS2 有效加工。在 Vero E6 细胞中传代时,缺乏刺突蛋白中弗林切割基序的亚小群体迅速成为优势,而野生型序列在病毒群中维持低百分比,如果病毒再次在 TMPRSS2 人细胞上传代,则迅速恢复适应。我们的数据表明,SARS-CoV-2 的刺突蛋白可以快速适应可用的蛋白酶,并主张进行深度序列监测以识别新型变异体的出现。最近出现的 SARS-CoV-2 变异株 B.1.1.7(阿尔法变异株)、B.1.617.2(德尔塔变异株)和 B.1.1.529(奥密克戎变异株)都携带有刺突突变,与病毒发病机制增加有关。这些新型变异株的出现突显了冠状病毒适应和进化的潜力,尽管临床分离株的稳定共识基因型仍然存在。我们表明,在病毒群体中维持的亚优势变体使病毒能够快速适应选择压力。虽然这些适应导致基因型发生变化,但这种变化并不是绝对的,原始基因型的基因组在病毒群中得以维持。因此,我们的结果表明,SARS-CoV-2 在众多独立的临床分离株中相对稳定,掩盖了其快速适应新环境的潜力。