Suppr超能文献

医学成像中特定任务评估的高斯函数模型:理论研究

Gaussian Function Model for Task-Specific Evaluation in Medical Imaging: A Theoretical Investigation.

作者信息

Maruyama Sho

机构信息

Department of Radiological Technology, Gunma Prefectural College of Health Sciences, Maebashi, Gunma, Japan.

出版信息

J Imaging Inform Med. 2025 Apr 24. doi: 10.1007/s10278-025-01511-9.

Abstract

In medical image diagnosis, understanding image characteristics is crucial for selecting and optimizing imaging systems and advancing their development. Objective image quality assessments, based on specific diagnostic tasks, have become a standard in medical image analysis, bridging the gap between experimental observations and clinical applications. However, conventional task-based assessments often rely on ideal observer models that assume target signals have circular shapes with well-defined edges. This simplification rarely reflects the true complexity of lesion morphology, where edges exhibit variability. This study proposes a more practical approach by employing a Gaussian distribution to represent target signal shapes. This study explicitly derives the task function for Gaussian signals and evaluates the detectability index through simulations based on head computed tomography (CT) images with low-contrast lesions. Detectability indices were calculated for both circular and Gaussian signals using non-prewhitening and Hotelling observer models. The results demonstrate that Gaussian signals consistently exhibit lower detectability indices compared to circular signals, with differences becoming more pronounced for larger signal sizes. Simulated images closely resembling actual CT images confirm the validity of these calculations. These findings quantitatively clarify the influence of signal shape on detection performance, highlighting the limitations of conventional circular models. Thus, it provides a theoretical framework for task-based assessments in medical imaging, offering improved accuracy and clinical relevance for future advancements in the field.

摘要

在医学图像诊断中,了解图像特征对于选择和优化成像系统以及推动其发展至关重要。基于特定诊断任务的客观图像质量评估已成为医学图像分析的标准,弥合了实验观察与临床应用之间的差距。然而,传统的基于任务的评估通常依赖于理想观察者模型,该模型假设目标信号具有边缘清晰的圆形形状。这种简化很少反映病变形态的真正复杂性,其中边缘表现出变异性。本研究提出了一种更实用的方法,即采用高斯分布来表示目标信号形状。本研究明确推导了高斯信号的任务函数,并通过基于具有低对比度病变的头部计算机断层扫描(CT)图像的模拟来评估可检测性指数。使用非白化和霍特林观察者模型计算了圆形和高斯信号的可检测性指数。结果表明,与圆形信号相比,高斯信号始终表现出较低的可检测性指数,对于较大的信号尺寸,差异变得更加明显。与实际CT图像非常相似的模拟图像证实了这些计算的有效性。这些发现定量地阐明了信号形状对检测性能的影响,突出了传统圆形模型的局限性。因此,它为医学成像中基于任务的评估提供了一个理论框架,为该领域未来的发展提供了更高的准确性和临床相关性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验