Ulpiano Cristiana, Salvador William, Franchi-Mendes Teresa, Huang Min-Chang, Lin Yee-Hsien, Lin Han-Tse, Rodrigues Carlos A V, Fernandes-Platzgummer Ana, Cabral Joaquim M S, Monteiro Gabriel A, da Silva Cláudia L
Department of Bioengineering and iBB - Institute for Bioengineering and Biosciences at Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal.
Associate Laboratory i4HB - Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal.
Stem Cell Res Ther. 2025 Apr 24;16(1):210. doi: 10.1186/s13287-025-04341-2.
Mesenchymal-stromal-cell-derived extracellular vesicles (MSC-EVs) play a key role in the paracrine effects of MSC and have demonstrated therapeutic potential in various preclinical models. However, clinical translation is hindered by manufacturing practices relying on planar culture systems, fetal bovine serum (FBS)-supplemented media, and non-scalable, low-purity EV isolation methods that fail to meet dose and safety requirements, underscoring the need for innovative approaches. In this study, we developed a scalable platform to manufacture human MSC-EVs at clinically relevant numbers, integrating continuous collection of EV-enriched conditioned media (CM) using a stirred-tank reactor (STR) under xenogeneic-free conditions and a scalable downstream process.
Wharton's jelly-derived MSC (MSC(WJ)) were expanded using microcarriers in a controlled STR using human platelet lysate (hPL)-supplemented medium. Then, a 3-day EV production stage, featuring continuous harvesting of the CM, was established using a novel serum-/xeno(geneic)-free exosome depleted-hPL supplement. For the isolation of MSC-EVs, a scalable process was implemented by pairing tangential flow filtration and anion exchange chromatography. Isolated MSC-EVs were characterised using nanoparticle tracking analysis, protein and zeta potential quantification, western blot analysis of EV protein markers, transmission electron microscopy and uptake studies of fluorescently labelled-EVs.
The system sustained the efficient expansion of MSC(WJ), reaching a total of (6.03 ± 0.181) x 10 cells after 7 days, which corresponds to a 30.1 ± 0.740-fold expansion. Upon a 3-day continuous CM harvesting, a total of (2.13 ± 0.301) x 10 EVs were isolated corresponding to a particle yield factor of (1.26 ± 0.186) x 10 EVs/cell/day. MSC-EVs presented high purity levels ((5.53 ± 1.55) x 10 particles/µg), a homogeneous small size distribution (mean diameter of 115 ± 4.88 nm), a surface charge of -23.4 ± 6.23 mV, positive detection of tetraspanins CD9 and CD63 and syntenin-1 and displayed a typical cup-shaped morphology. MSC-EVs were readily incorporated by endothelial cells and two human breast cancer cell lines.
Overall, the scalable and Good Manufacturing Practices (GMP)-compliant platform established herein enabled the reproducible manufacturing of MSC-EVs with high purity and generally accepted characteristics concerning size, protein markers, surface charge, morphology, and cellular internalization, validating its potential for future clinical applications.
间充质基质细胞衍生的细胞外囊泡(MSC-EV)在MSC的旁分泌作用中起关键作用,并已在各种临床前模型中显示出治疗潜力。然而,依赖平面培养系统、添加胎牛血清(FBS)的培养基以及无法满足剂量和安全要求的不可扩展、低纯度EV分离方法的制造实践阻碍了临床转化,这突出了创新方法的必要性。在本研究中,我们开发了一个可扩展的平台,以临床相关数量生产人MSC-EV,该平台整合了在无异种条件下使用搅拌罐反应器(STR)连续收集富含EV的条件培养基(CM)以及可扩展的下游工艺。
使用微载体在添加人血小板裂解物(hPL)的培养基的受控STR中扩增来自沃顿胶的MSC(MSC(WJ))。然后,使用新型无血清/无异种(基因)外泌体耗尽的hPL补充剂建立了一个为期3天的EV生产阶段,其特点是连续收获CM。为了分离MSC-EV,通过将切向流过滤和阴离子交换色谱配对实施了一个可扩展的过程。使用纳米颗粒跟踪分析、蛋白质和zeta电位定量、EV蛋白质标记物的蛋白质印迹分析、透射电子显微镜以及荧光标记EV的摄取研究对分离的MSC-EV进行表征。
该系统维持了MSC(WJ)的高效扩增,7天后细胞总数达到(6.03±0.181)×10个,相当于30.1±0.740倍的扩增。在连续3天收获CM后,共分离出(2.13±0.301)×10个EV,对应于(1.26±0.186)×10个EV/细胞/天的颗粒产率因子。MSC-EV呈现出高纯度水平((5.53±1.55)×10个颗粒/μg)、均匀的小尺寸分布(平均直径为115±4.88nm)、-23.4±6.23mV的表面电荷、四跨膜蛋白CD9和CD63以及syntenin-1的阳性检测,并显示出典型的杯状形态。MSC-EV很容易被内皮细胞和两个人乳腺癌细胞系摄取。
总体而言,本文建立的可扩展且符合良好生产规范(GMP)的平台能够以高纯度可重复生产MSC-EV,并且在尺寸、蛋白质标记物、表面电荷、形态和细胞内化方面具有普遍认可的特征,验证了其在未来临床应用中的潜力。