文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于细胞内耐甲氧西林金黄色葡萄球菌感染治疗的pH/透明质酸响应性载万古霉素壳寡糖纳米颗粒。

pH/Hyal-responsive vancomycin-loaded chitooligosaccharide nanoparticles for intracellular MRSA infection treatment.

作者信息

Li Wenting, Li WeiWei, Zhai Xuanxiang, Liu Xiao, Shi Xiaoyi, Chen Xiangjun, Hong Wei

机构信息

School of Pharmacy, Shandong New Drug Loading & Release Technology and Preparation Engineering Laboratory, Binzhou Medical University, 346 Guanhai Road, Yantai, 264003, PR China.

出版信息

Mater Today Bio. 2025 Apr 8;32:101731. doi: 10.1016/j.mtbio.2025.101731. eCollection 2025 Jun.


DOI:10.1016/j.mtbio.2025.101731
PMID:40275955
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12018565/
Abstract

() is recognized as among the most critical bacterial pathogens globally. A significant portion of the complications associated with infections arises from its ability to persist inside host phagocytes, particularly macrophages, making the eradication of intracellular vital for therapeutic success. Regrettably, many antibiotics exhibit limited penetration into cells, underscoring the necessity for efficient intracellular delivery mechanisms. In this study, vancomycin-loaded chitooligosaccharide nanoparticles (COS@Van) coated with hyaluronic acid (HA), were engineered to function as an active-targeting antibiotic carrier recorded as HA/COS@Van. The HA coating serves as an external shell, which 1) covers the positive surface charge of COS NPs, thereby enhancing their biocompatibility and extending circulation time, and 2) facilitates targeted delivery to macrophages through specific interactions with the CD44 receptor. Confocal laser scanning microscopy (CLSM) and flow cytometry (FCM) experiments confirmed that HA/COS could effectively accumulate in methicillin-resistant (MRSA) infected macrophages. Additionally, when administered intravenously in mouse models, HA/COS demonstrated markedly increased accumulation in the liver, the primary location of infected macrophages. These findings highlight the active-targeting capabilities of HA/COS both and settings. Consequently, after being loaded with Van, HA/COS@Van exhibited superior efficacy in killing intracellular MRSA , as compared to free Van. Furthermore, HA/COS@Van also demonstrated enhanced bactericidal activity in both mouse acute peritonitis model and mouse organ infection model. Therefore, this active-targeting delivery system may hold promise in advancing therapeutic outcomes for infections related to intracellular pathogens.

摘要

()被公认为全球最关键的细菌病原体之一。与()感染相关的很大一部分并发症源于其在宿主吞噬细胞(尤其是巨噬细胞)内持续存在的能力,因此消除细胞内的()对于治疗成功至关重要。遗憾的是,许多抗生素在细胞内的渗透有限,这凸显了高效细胞内递送机制的必要性。在本研究中,负载万古霉素的壳寡糖纳米颗粒(COS@Van)用透明质酸(HA)包被,设计成一种主动靶向抗生素载体,记为HA/COS@Van。HA包被作为外壳,1)覆盖COS纳米颗粒的正表面电荷,从而增强其生物相容性并延长循环时间,2)通过与CD44受体的特异性相互作用促进向巨噬细胞的靶向递送。共聚焦激光扫描显微镜(CLSM)和流式细胞术(FCM)实验证实,HA/COS可有效积聚在耐甲氧西林()(MRSA)感染的巨噬细胞中。此外,当在小鼠模型中静脉给药时,HA/COS在肝脏(感染巨噬细胞的主要部位)中的积聚明显增加。这些发现突出了HA/COS在体外和体内环境中的主动靶向能力。因此,负载Van后,与游离Van相比,HA/COS@Van在杀死细胞内MRSA方面表现出卓越的疗效。此外,HA/COS@Van在小鼠急性腹膜炎模型和小鼠器官感染模型中也表现出增强的杀菌活性。因此,这种主动靶向递送系统可能有望改善与细胞内病原体相关感染的治疗效果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e439/12018565/cecd3bfe0f98/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e439/12018565/c6fc7e5afe2e/ga1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e439/12018565/99f1e4144e3d/sc1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e439/12018565/55a4e6411744/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e439/12018565/eaa3f53248bf/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e439/12018565/9aeb697228bb/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e439/12018565/ec93fa7f4375/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e439/12018565/5b710e0d3abe/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e439/12018565/cecd3bfe0f98/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e439/12018565/c6fc7e5afe2e/ga1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e439/12018565/99f1e4144e3d/sc1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e439/12018565/55a4e6411744/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e439/12018565/eaa3f53248bf/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e439/12018565/9aeb697228bb/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e439/12018565/ec93fa7f4375/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e439/12018565/5b710e0d3abe/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e439/12018565/cecd3bfe0f98/gr6.jpg

相似文献

[1]
pH/Hyal-responsive vancomycin-loaded chitooligosaccharide nanoparticles for intracellular MRSA infection treatment.

Mater Today Bio. 2025-4-8

[2]
Particle engineering for intracellular delivery of vancomycin to methicillin-resistant Staphylococcus aureus (MRSA)-infected macrophages.

J Control Release. 2017-8-7

[3]
Antibacterial and antibiofilm potentials of vancomycin-loaded niosomal drug delivery system against methicillin-resistant Staphylococcus aureus (MRSA) infections.

BMC Biotechnol. 2024-7-8

[4]
Self-assembled oleylamine grafted hyaluronic acid polymersomes for delivery of vancomycin against methicillin resistant Staphylococcus aureus (MRSA).

Colloids Surf B Biointerfaces. 2019-7-25

[5]
Formulation of pH-Responsive Quatsomes from Quaternary Bicephalic Surfactants and Cholesterol for Enhanced Delivery of Vancomycin against Methicillin Resistant .

Pharmaceutics. 2020-11-14

[6]
Metal Ion and Antibiotic Co-loaded Nanoparticles for Combating Methicillin-Rresistant -Induced Osteomyelitis.

ACS Nano. 2025-2-11

[7]
Multifunctional fucoidan-loaded Zn-MOF-encapsulated microneedles for MRSA-infected wound healing.

J Nanobiotechnology. 2024-4-4

[8]
Hyaluronic Acid-Modified Micelles of Azithromycin and Quercetin Against Infections Caused by Methicillin-Resistant .

Int J Nanomedicine. 2024

[9]
pH/Hyal-Responsive Surface-Charge Switchable Electrostatic Complexation for Efficient Elimination of MRSA Infection.

Mol Pharm. 2023-7-3

[10]
pH-Responsive Lipid-Dendrimer Hybrid Nanoparticles: An Approach To Target and Eliminate Intracellular Pathogens.

Mol Pharm. 2019-10-16

本文引用的文献

[1]
Eliminating Intracellular MRSA via Mannosylated Lipid-Coated Calcium Phosphate Nanoparticles.

Mol Pharm. 2024-11-4

[2]
Phenolic Acid Functional Quaternized Chitooligosaccharide Derivatives: Preparation, Characterization, Antioxidant, Antibacterial, and Antifungal Activity.

Mar Drugs. 2023-10-13

[3]
pH/Hyal-Responsive Surface-Charge Switchable Electrostatic Complexation for Efficient Elimination of MRSA Infection.

Mol Pharm. 2023-7-3

[4]
Disulfiram loaded calcium phosphate nanoparticles for enhanced cancer immunotherapy.

Biomaterials. 2022-12

[5]
Dual-Cascade Responsive Nanoparticles Enhance Pancreatic Cancer Therapy by Eliminating Tumor-Resident Intracellular Bacteria.

Adv Mater. 2022-12

[6]
Iminoboronate-chitooligosaccharides hydrogels with strong antimicrobial activity for biomedical applications.

Carbohydr Polym. 2022-1-15

[7]
Coating of a Novel Antimicrobial Nanoparticle with a Macrophage Membrane for the Selective Entry into Infected Macrophages and Killing of Intracellular Staphylococci.

Adv Funct Mater. 2020-11-25

[8]
Eradicating intracellular MRSA via targeted delivery of lysostaphin and vancomycin with mannose-modified exosomes.

J Control Release. 2021-1-10

[9]
Chitosan-based nanoparticles against bacterial infections.

Carbohydr Polym. 2021-1-1

[10]
Hyaluronic Acid-Based Theranostic Nanomedicines for Targeted Cancer Therapy.

Cancers (Basel). 2020-4-10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索