Wang Maxwell H, Onnela Jukka-Pekka
Department of Biostatistics, Harvard University, 677 Huntington Ave, Boston, MA 02115 USA.
Appl Netw Sci. 2025;10(1):13. doi: 10.1007/s41109-025-00694-y. Epub 2025 Apr 22.
In models of infectious disease dynamics, the incorporation of contact network information allows for the capture of the non-randomness and heterogeneity of realistic contact patterns. Oftentimes, it is assumed that this underlying network is known with perfect certainty. However, in realistic settings, the observed data usually serves as an imperfect proxy of the actual contact patterns in the population. Furthermore, event times in observed epidemics are not perfectly recorded; individual infection and recovery times are often missing. In order to conduct accurate inferences on parameters of contagion spread, it is crucial to incorporate these sources of uncertainty. In this paper, we propose the use of Network-augmented Mixture Density Network-compressed ABC (NA-MDN-ABC) to learn informative summary statistics for the available data. This method will allow for Bayesian inference on the parameters of a contagious process, while accounting for imperfect observations on the epidemic and the contact network. We will demonstrate the use of this method on simulated epidemics and networks, and extend this framework to analyze the spread of Tattoo Skin Disease (TSD) among bottlenose dolphins in Shark Bay, Australia.
在传染病动力学模型中,纳入接触网络信息能够捕捉现实接触模式的非随机性和异质性。通常情况下,人们假定这个潜在网络是完全已知的。然而,在现实环境中,观测数据往往只是人群中实际接触模式的不完美代表。此外,观测到的疫情中的事件时间并未被完美记录;个体感染和康复时间常常缺失。为了对传染传播参数进行准确推断,纳入这些不确定性来源至关重要。在本文中,我们提议使用网络增强混合密度网络压缩近似贝叶斯计算(NA-MDN-ABC)来为可用数据学习信息性汇总统计量。这种方法将允许对传染过程的参数进行贝叶斯推断,同时考虑到对疫情和接触网络的不完美观测。我们将展示该方法在模拟疫情和网络中的应用,并扩展这个框架来分析澳大利亚鲨鱼湾宽吻海豚中纹身皮肤病(TSD)的传播情况。