Kamio Tadashi, Ikegami Masaru, Mizuno Megumi, Ishii Seiichiro, Tajima Hayato, Machida Yoshihito, Fukaguchi Kiyomitsu
Department of Anesthesiology and Critical Care Medicine, Jichi Medical University Saitama Medical Center, Saitama, Japan.
Division of Critical Care, Shonan Kamakura General Hospital, Kamakura, Kanagawa, Japan.
Transfusion. 2025 Jun;65(6):1051-1060. doi: 10.1111/trf.18261. Epub 2025 Apr 25.
The increasing use of extracorporeal membrane oxygenation (ECMO) has highlighted challenges in managing bleeding complications. Optimal transfusion strategies remain uncertain for this diverse patient group, necessitating accurate predictive tools. This study developed and validated a machine learning (ML) algorithm to predict bleeding complications in patients with ECMO, using red blood cell (RBC) transfusion as a surrogate marker.
Data from the Tokushukai Medical Database (2018-2022), covering 71 hospitals, were used. An ML approach was employed to predict bleeding complications, using RBC transfusion events as a surrogate marker. Model performance was evaluated using precision, recall, F1 score, and accuracy. SHapley Additive exPlanations (SHAP) analysis was conducted to identify key factors influencing model predictions.
Out of 470 ECMO-treated intensive care unit patients, 357 were included for model development. Forty-seven variables were used, with the light gradient boosting machine (LightGBM) and random forest models performing better than the other models, with receiver operating characteristic (ROC) area under the curve (AUC) above 0.7 for both (accuracy: 70.5%, ROC AUC: 0.703, recall: 0.784, and ROC AUC: 0.705, respectively). Models such as extreme gradient boosting performed similarly, while support vector classification had the lowest performance. SHAP analysis identified circulating blood volume, hemoglobin, and weight as the most important predictive factors.
The LightGBM and Random Forest models effectively predict bleeding complications in patients with ECMO, using RBC transfusion as a surrogate marker. This tool can support early identification of high-risk patients and improve overall transfusion management.
体外膜肺氧合(ECMO)的使用日益增加,凸显了处理出血并发症方面的挑战。对于这一多样化的患者群体,最佳输血策略仍不明确,因此需要准确的预测工具。本研究开发并验证了一种机器学习(ML)算法,以红细胞(RBC)输血作为替代标志物,预测接受ECMO治疗患者的出血并发症。
使用来自德洲会医疗数据库(2018 - 2022年)的数据,该数据库涵盖71家医院。采用ML方法预测出血并发症,将RBC输血事件作为替代标志物。使用精确率、召回率、F1分数和准确率评估模型性能。进行SHapley加性解释(SHAP)分析,以确定影响模型预测的关键因素。
在470例接受ECMO治疗的重症监护病房患者中,357例纳入模型开发。使用了47个变量,轻梯度提升机(LightGBM)和随机森林模型的表现优于其他模型,两者的曲线下受试者操作特征(ROC)面积(AUC)均高于0.7(精确率分别为70.5%,ROC AUC为0.703,召回率为0.784,ROC AUC为0.705)。极端梯度提升等模型表现类似,而支持向量分类的性能最低。SHAP分析确定循环血容量、血红蛋白和体重为最重要的预测因素。
LightGBM和随机森林模型以RBC输血作为替代标志物,有效预测了接受ECMO治疗患者的出血并发症。该工具可支持早期识别高危患者并改善整体输血管理。