Suppr超能文献

体外膜肺氧合支持下小儿患者脑损伤机器学习模型的开发与外部验证

Development and external validation of a machine learning model for brain injury in pediatric patients on extracorporeal membrane oxygenation.

作者信息

Deng Bixin, Zhao Zhe, Ruan Tiechao, Zhou Ruixi, Liu Chang'e, Li Qiuping, Cheng Wenzhe, Wang Jie, Wang Feng, Xie Haixiu, Li Chenglong, Du Zhongtao, Lu Wenting, Li Xiaohong, Ying Junjie, Xiong Tao, Hou Xiaotong, Hong Xiaoyang, Mu Dezhi

机构信息

Department of Pediatric, West China Second University Hospital, Sichuan University, Chengdu, China.

Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, China.

出版信息

Crit Care. 2025 Jan 9;29(1):17. doi: 10.1186/s13054-024-05248-9.

Abstract

BACKGROUND

Patients supported by extracorporeal membrane oxygenation (ECMO) are at a high risk of brain injury, contributing to significant morbidity and mortality. This study aimed to employ machine learning (ML) techniques to predict brain injury in pediatric patients ECMO and identify key variables for future research.

METHODS

Data from pediatric patients undergoing ECMO were collected from the Chinese Society of Extracorporeal Life Support (CSECLS) registry database and local hospitals. Ten ML methods, including random forest, support vector machine, decision tree classifier, gradient boosting machine, extreme gradient boosting, light gradient boosting machine, Naive Bayes, neural networks, a generalized linear model, and AdaBoost, were employed to develop and validate the optimal predictive model based on accuracy and area under the curve (AUC). Patients were divided into retrospective cohort for model development and internal validation, and one cohort for external validation.

RESULTS

A total of 1,633 patients supported by ECMO were included in the model development, of whom 181 experienced brain injury. In the external validation cohort, 30 of the 154 patients experienced brain injury. Fifteen features were selected for the model construction. Among the ML models tested, the random forest model achieved the best performance, with an AUC of 0.912 for internal validation and 0.807 for external validation.

CONCLUSION

The Random Forest model based on machine learning demonstrates high accuracy and robustness in predicting brain injury in pediatric patients supported by ECMO, with strong generalization capabilities and promising clinical applicability.

摘要

背景

接受体外膜肺氧合(ECMO)支持的患者发生脑损伤的风险很高,这会导致显著的发病率和死亡率。本研究旨在运用机器学习(ML)技术预测接受ECMO治疗的儿科患者的脑损伤,并确定未来研究的关键变量。

方法

从中国体外生命支持学会(CSECLS)注册数据库和当地医院收集接受ECMO治疗的儿科患者的数据。采用十种ML方法,包括随机森林、支持向量机、决策树分类器、梯度提升机、极端梯度提升、轻梯度提升机、朴素贝叶斯、神经网络、广义线性模型和AdaBoost,基于准确性和曲线下面积(AUC)开发并验证最佳预测模型。患者分为用于模型开发和内部验证的回顾性队列,以及用于外部验证的一个队列。

结果

共有1633例接受ECMO支持的患者纳入模型开发,其中181例发生脑损伤。在外部验证队列中,154例患者中有30例发生脑损伤。为模型构建选择了15个特征。在所测试的ML模型中,随机森林模型表现最佳,内部验证的AUC为0.912,外部验证的AUC为0.807。

结论

基于机器学习的随机森林模型在预测接受ECMO支持的儿科患者脑损伤方面显示出高准确性和稳健性,具有很强的泛化能力和良好的临床适用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ae4/11716487/1c14a1ad6000/13054_2024_5248_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验