Suppr超能文献

宿主特异性微生物群-反刍相互作用塑造了奶牛的甲烷产生表型。

Host-specific microbiome-rumination interactions shape methane-yield phenotypes in dairy cattle.

作者信息

Castaneda Alejandro, Indugu Nagaraju, Lenker Kathryn, Narayan Kapil, Rassler Sarah, Bender Joseph, Baker Linda, Purandare Ojas, Chai David, Zhao Xin, Pitta Dipti

机构信息

Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.

Department of Animal Science, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, Québec, Canada.

出版信息

mSphere. 2025 May 27;10(5):e0009025. doi: 10.1128/msphere.00090-25. Epub 2025 Apr 25.

Abstract

UNLABELLED

Enteric methane emissions (EMEs) negatively impact both the environment and livestock efficiency. Given the proposed link between CH yield and the rumination time (RT) phenotype, we hypothesize that this connection is mediated by the gut microbiome. This study investigated the RT-microbiome-EME connection using rumination-bolus, fecal, and rumen microbiomes as non-invasive proxies for identifying low-EME cows. High-RT cows ruminated 94 minutes longer per day (20%) and exhibited 26% lower EME than low-RT cows, confirming a strong RT-CH-yield association. Microbial analysis revealed conserved methanogen diversity across the rumen, bolus, and fecal microbiomes, though functional differences were evident. High-RT cows had a greater abundance of , suggesting an increased potential for methylotrophic methanogenesis, whereas low-RT cows exhibited higher YE315 abundance, indicative of CO-utilizing methanogenesis. Additionally, high-RT cows showed increased alternative hydrogen sinks, supported by upregulated genes encoding fumarate reductase, sulfate reductase, nitrate reductase, and ammonia-forming nitrite reductase, thereby reducing hydrogen availability for methanogenesis. Metabolically, high-RT cows had higher propionate concentrations and were enriched with rapid-fermenting bacteria (, , , and ), whereas low-RT cows exhibited higher acetate concentrations with elevated acetate-producing pathways, reflecting differences in energy partitioning mechanisms. This study establishes RT as a microbiome-linked, non-invasive screening tool for identifying low-EME cows. The observed microbial and metabolic shifts in high-RT cows suggest that RT-based selection could enhance methane mitigation, rumen efficiency, and climate-smart livestock production. Leveraging RT-associated microbial profiles offers a scalable and cost-effective approach to reducing EME in cattle.

IMPORTANCE

Methane emissions from livestock contribute to climate change and reduce animal efficiency. This study reveals that cows with longer rumination times (chewing cud for an extra 94 minutes daily) produce 26% less methane than cows with shorter rumination times. The gut microbiome plays a key role-low-methane cows host microbial communities that produce less methane while efficiently utilizing hydrogen for energy conservation in the rumen. By analyzing rumination sensor data and/or in combination with microbial profiles from rumen or fecal samples, farmers can non-invasively identify and select cows that naturally emit less methane. This scalable, cost-effective strategy offers a practical solution for reducing livestock's environmental footprint while enhancing efficiency and advancing climate-smart agriculture.

摘要

未标注

肠道甲烷排放(EMEs)对环境和牲畜效率均有负面影响。鉴于甲烷产量与反刍时间(RT)表型之间存在的潜在联系,我们推测这种联系是由肠道微生物群介导的。本研究使用反刍丸剂、粪便和瘤胃微生物群作为识别低甲烷排放奶牛的非侵入性替代指标,对反刍时间 - 微生物群 - 肠道甲烷排放的联系进行了研究。高反刍时间的奶牛每天反刍时间长94分钟(20%),且其肠道甲烷排放比低反刍时间的奶牛低26%,证实了反刍时间与甲烷产量之间存在很强的关联。微生物分析表明,瘤胃、反刍丸剂和粪便微生物群中的产甲烷菌多样性具有保守性,不过功能差异很明显。高反刍时间的奶牛有更丰富的 ,表明甲基营养型产甲烷的潜力增加,而低反刍时间的奶牛则表现出更高的YE315丰度,表明其利用一氧化碳产甲烷。此外,高反刍时间的奶牛显示出替代氢汇增加,这由编码延胡索酸还原酶、硫酸盐还原酶、硝酸盐还原酶和生成氨的亚硝酸还原酶的基因上调所支持,从而减少了产甲烷所需的氢的可用性。在代谢方面,高反刍时间的奶牛丙酸浓度较高,且富含快速发酵细菌( 、 、 和 ),而低反刍时间的奶牛乙酸浓度较高,乙酸生成途径增加,这反映了能量分配机制的差异。本研究将反刍时间确立为一种与微生物群相关的非侵入性筛选工具,用于识别低甲烷排放奶牛。在高反刍时间的奶牛中观察到的微生物和代谢变化表明,基于反刍时间的选择可以增强甲烷减排、瘤胃效率和气候友好型畜牧生产。利用与反刍时间相关的微生物特征提供了一种可扩展且经济高效的方法来减少牛的肠道甲烷排放。

重要性

牲畜的甲烷排放会导致气候变化并降低动物效率。本研究表明,反刍时间较长(每天多咀嚼94分钟)的奶牛产生的甲烷比反刍时间较短的奶牛少26%。肠道微生物群起着关键作用——低甲烷排放的奶牛拥有能产生较少甲烷的微生物群落,同时能在瘤胃中有效利用氢进行能量保存。通过分析反刍传感器数据和/或结合瘤胃或粪便样本的微生物特征,农民可以非侵入性地识别和选择天然甲烷排放量较低的奶牛。这种可扩展、经济高效的策略为减少牲畜的环境足迹、提高效率和推进气候友好型农业提供了切实可行的解决方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8007/12108071/f4e0b7ffe8ac/msphere.00090-25.f001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验